Polarons, Excitons, and Defects in Scintillators

Paul Erhart¹

Daniel Åberg², Babak Sadigh², Andre Schleife³

¹⁾ Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
 ²⁾ Lawrence Livermore National Laboratory, California, USA
 ³⁾ University of Illinois, Urbana-Champaign, USA

http://www.materialsmodeling.com

Overview

• Basic scintillator physics

- Resolution enhancement by Sr co-doping
- Polaron and exciton formation in Nal
- From excitons to defects

Phosphors and Scintillators

- Usually host material doped with activator e.g., Ce, Eu, other RE
- Solid state lighting
- Radiation detection (medical imaging, nonproliferation, ...)

Ideal scintillation pathway (simplified)

Incoming radiation

Hole trapping

Exciton formation

Energy to activator

Emission

Overview

- Basic scintillator physics
- Resolution enhancement by Sr co-doping
- Polaron and exciton formation in Nal
- From excitons to defects

Limits on energy resolution

- Energy resolution of scintillator detectors is worse than suggested by counting statistics
- Problem linked to nonproportionality of light yield to energy of incoming radiation

Resolution enhancement by Sr co-doping

CHALMERS

[1] Alekhin *et al.*, APL **102**, 161915 (2013)
[2] Alekhin *et al.*, JAP **113**, 224904 (2013)

Fundamental processes

Sequence of events after high-energy radiation impact

Stage I:

- High-energy cascade
- Produces high-energy carriers and excitations

- Excitations diffuse to activators
- Can annihilate along the way via Auger

Stage III: Light output via recombination at activators

Fundamental processes

Sequence of events after high-energy radiation impact

Stage III: Light output via recombination at activators

Fundamental processes

Nonlinearity in rate equation picture

(1) Effect of Sr on defect equilibria

Pure material

(1) Effect of Sr on defect equilibria

Sr-doping

(2) Electronic structure of free vacancy

(III) Free $V_{Br} \rightarrow$ deep electron trapping level

(3) Effect of Sr on Br vacancy

(3) Effect of Sr on Br vacancy

(V) Vacancy level localizes on Ce!!

What do we know?

- I. Pure material \rightarrow Br vacancy most important defect
- II. Sr-doping $\rightarrow V_{\rm Br}$ concentration up by >10⁴
- III. Free $V_{\rm Br}$ \rightarrow deep electron trapping level
- IV. Sr-doping \rightarrow moves $V_{\rm Br}$ trapping level closer to CBM
- V. $Ce_{La}-V_{Br} \rightarrow$ vacancy level localizes on Ce

Model

- Initial electrons trapped during stage I/II
 → Not available for annihilation processes (scales n³)
- Allows Ce to catch larger fraction of (slower) holes
 Ce³⁺ + h → Ce⁴⁺
- Followed by electron transfer
 Ce⁴⁺ + e' → Ce^{3+*} (and emission)

Appl. Phys. Lett. **104**, 211908 (2014)

Overview

- Basic scintillator physics
- Resolution enhancement by Sr co-doping
- Polaron and exciton formation in Nal
- From excitons to defects

Dynamics of STH/STE Formation in Nal

 V_k -center closely resembles an I_2 dimer

Dynamics of STH/STE Formation in Nal

Dynamics of STH/STE Formation in Nal

Reaction coordinate

Exp. Luminescence energy: 4.2 eV

Overview

- Basic scintillator physics
- Resolution enhancement by Sr co-doping
- Polaron and exciton formation in Nal
- From excitons to defects

On-center vs Off-center STE

Low densities (ρ_{STE}<0.5%)
 → on-center STE

 Large densities (ρ_{STE}>1%) such as along the track of an incident gamma-ray
 → off-center STE

On-center is the stable configuration in most experiments

Self-trapped exciton formation

From STEs to F+H pairs

What happens if we continue moving along <110>?

- Nearest neighbor F+H pairs (Frenkel pairs) F = neutral vacancy (V_i^x) H = neutral interstitial (I_{int}^x)
- Type I: in-plane
- Type II: dimer tilted out-of-plane

From STEs to F+H pairs

Are there other configurations of interest?

From STEs to F+H pairs

From STEs to F+H pairs

Transition from STE to defect pairs

- Flat energy landscape along <110>
- Barriers for rotation much higher

 Unlikely path for Nal but possibly viable for other AHCs (→ KCI, RbI?) which show more defect production and are also less proportional

Summary

- Polaron and exciton formation in halides coupled to large lattice distortion
- Density dependence of exciton configuration provides nucleus for defect formation
- Model for resolution enhancement by co-doping:
 - Initial electrons trapped during stage I/II \rightarrow Not available for annihilation processes (scales n^3)
 - Allows Ce to catch larger fraction of (slower) holes
 Ce³⁺ + h[•] → Ce⁴⁺
 - Followed by electron transfer Ce⁴⁺ + e' \rightarrow Ce^{3+*} (and emission)

Appl. Phys. Lett. **104**, 211908 (2014)