

International Symposium on Electrical Fatigue in Functional Materials 15. – 18.09.2014, Sellin, Rügen

Investigation and Manipulation of Domains on Small Length Scales in Ferroelectric Materials: Limits and Opportunities

<u>Nina Balke</u>, Petro Maksymovych, Stephen Jesse, Sergei V. Kalinin Oak Ridge National Laboratory

Center for Nanophase Materials Sciences

- > What can we study?
 - \rightarrow Electromechanical phenomena overview
 - \rightarrow Ferroelectrics in particular
 - \rightarrow "New" ferroelectrics (ultra-thin, strained, ...)
- > Dominant signal contribution for ferroelectrics $\rightarrow d_{33}$ and electrostatic tip-sample interaction
- Ionic transport in Li-ion battery cathodes
- Solid-liquid interface and EDL for ionic liquids

> Summary

Scanning Probe Microscopy (SPM)

Investigate electromechanical phenomena on the nanoscale

Practical: Apply a bias \rightarrow Measure change in cantilever position

- 1) Sample volume expansion vs. force on tip
- 2) Static vs. dynamic

Electromechanical Phenomena

Physical

Electrochemical

Ferroelectrics

Piezoresponse Force Microscopy (PFM): Domain imaging (V_{ac}) and manipulation (V_{dc})

Stability of nanodomains

Ferroelectrics

Pushing the limits ... is everything ferroelectric?

 $V = V_{dc} + V_{ac}\sin(\omega t)$

Dominant Signal Contribution for Ferroelectrics

 d_{eff} : effective piezoelectric constant k: stiffness C': Capacitance gradient

> tip and sample

> > V_{dc}

Electrostatics
$$x = d_{eff} V$$
 $x = \frac{1}{2}k^{-1}C'V^2$ $x = d_{eff} [V_{dc} + V_{ac} \sin(\omega t)]$ $x = \frac{1}{2}k^{-1}C'[V_{dc} + V_{ac} \sin(\omega t)]^2$ $x_{\omega} = d_{eff} V_{ac} \sin(\omega t)$ $x_{\omega} = k^{-1}C'V_{dc} V_{ac} \sin(\omega t) \Longrightarrow \underset{dependent}{\text{sample}}$ $x_{\omega} = d_{eff} (V_{dc}) V_{ac} \sin(\omega t) \Longrightarrow \underset{dependent}{\text{sample}}$ $x_{2\omega} = \frac{1}{4}k^{-1}C'V_{ac}^2 \cos(2\omega t)$ $t_{2\omega} = \frac{1}{4}k^{-1}C'V_{ac}^2 \cos(2\omega t)$ $t_{2\omega} = \frac{1}{4}k^{-1}C'V_{ac}^2 \cos(2\omega t)$

Ideal Ferroelectrics

A*sin(P)

V_{dc}

PZT thin film

- On-field: $V_{dc} + V_{ac}$
- Piezoresponse
- Electrostatics

Off-field: V_{ac} only

• Piezoresponse

BFO thin film

- Loop shape deviates strongly from the ideal case
- BFO thin films have often problems with leakage (high current flow)

BFO thin film

PZT thin film

- Loop is shifted down for negative voltages
- Shift in differential loop towards more negative surface potential

How to measure the effect of change in surface potential?

Contact Kelvin Probe Force Microscopy (cKPFM): Change of electrostatic tip-sample interactions after V_{dc} voltage pulses

Example: amorphous HfO₂ thin film on Si

• Hysteretic change in surface potential due to dynamic charge trapping and de-trapping.

• Change in surface potential through charge injection from the tip.

Hysteretic surface charge change + electrostatics = PFM loop!

Reminiscent of many PFM loops published on non-traditional ferroelectrics!

Hysteresis is mainly determined through the change in surface potential.

 $V_{dc}[V]$

X [um]

-9.87 V

Ferroelectrics

- PFM can be used to image and manipulate domains.
- Piezoelectricity is not the only signal origin during PFM.
- PFM on non-traditional ferroelectrics and ferroelectrics with weak polarization needs to be carefully studies to avoid misinterpretation of data.
- contact KPFM can help to study tip-induced changes in surface potentials and differentiate it from piezoelectric response.

rf-sputtered thin films on Au/Al_2O_3

Sergiy Kalnaus, Nancy Dudney

Comparison of LCO in different charging states (ex-situ)

- higher Li-ion mobility when Li-ions are removed from LCO
- Higher slope at the grain boundaries for Li_{0.5}CoO₂

Purely electrostatic case:
$$x_{\omega} = k^{-1}C'V_{dc}V_{ac}\sin(\omega t)$$

Slope is proportional to ϵ in non-contact <u>and</u> contact

- Ceramics/substrates with known dielectric constant
- Non-contact and contact can be treated equivalent
- Slope is proportional to ϵ if ϵ <20

Comparison of LCO in different charging states (ex-situ)

- higher Li-ion mobility when Li-ions are removed from LCO
- Higher ϵ at the grain boundaries for ${\rm Li}_{0.5}{\rm CoO}_2$

Suggesting that the Li-ion removal happens different in grains and grain boundaries

Ionic Transport in LiCoO₂

Temperature dependent measurement of y-intercept at OV_{dc}

Balke et al., Nano Lett. 12, 3399 (2012)

Ultimate dream: Correlation of nano- and macroscale properties through in-situ experiments

Liquid environment challenging for SPM \rightarrow different talk

AFM force spectroscopy to study the electric double layer formed by room temperature ionic liquids on HOPG

Force spectroscopy on model surfaces (HOPG) in Emim-Tf₂N

Statistical approach to identify ion positions.

Black et al., Nano Lett. 13, 5954 (2013).

Comparison of F-d with MD:

The measured ion positions coincide with anion positions.

Black et al., Nano Lett. 13, 5954 (2013).

Edge dislocations observed in the ionic layering in regions with no step edges.

Width of ion layer as measure for disorder.

Disorder is increased when ions are not in their equilibrium position.

Energy storage systems

- SPM can be used to study energy storage systems.
- Changes in dielectric properties can help looking at ionic transport.
- Force spectroscopy can "see" ion layering in the EDL for ionic liquids.
- Ionic liquids behave as liquid crystals and show ordering defects.
- Functionality of extended defects in future studies.

Support was provided by the U.S. Department of Energy, Basic Office of Science Energy Sciences, Materials Sciences and Engineering Division through the Office of Science **Early Career Research Program.**

Part of this material is based upon work supported as part of the Fluid Interface Reactions, Structures and Transport (**FIRST**), an **Energy Frontier Research Center** funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

Part of this research was conducted at the **Center for Nanophase Materials Sciences**, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy.

