

Electrical Fatigue in Lead-free Piezoelectric Ceramics

Never Stand Still

Science

School of Materials Science and Engineering

M.J. Hoffman

M.J. Hoffmann

Electrical Fatigue in Lead-free Piezoelectric Ceramics

Never Stand Still

Science

School of Materials Science and Engineering

M.J. Hoffman

UNSW Australia The University of New South Wales

We're different:

 Australia's leading university focused on science, technology and the professions

• Founded in 1949. Mission has always been to work closely with industry and business.

• B2B – "to be a **leading research** *intensive university* in the **Asia**-**Pacific region**, focusing on contemporary and social issues through defined strengths in **professional and scientific fields**"

UNSW FAST FACTS

Founded 1949 Located in **Sydney**

52,614 STUDENT ENROLMENTS

8 FACULTIES

Arts & Social Sciences Australian School of Business **Built Environment** College of Fine Arts Engineering Law Medicine Science

13,701 **INTERNATIONAL** STUDENTS

1 UNIVERSITY COLLEGE -UNSW Canberra at the Australian **Defence Force** Academy

52 97 SCHOOLS

AFFILIATED **INSTITUTES**

RESIDENTIAL COLLEGES

8

UNSW Students by Faculty*

Students by Faculty

7,182	Arts & Social Sciences	
12,214	Australian School of Business	
2,907	Built Environment	
3,497	College of Fine Arts	
10,774	Engineering	
3,082	Law	
3,898	Medicine	
6,340	Science	
3,273	UNSW Canberra	
1,350	Other	

* From UNSW Annual Report 2013

RESEARCH

Australian RANKS #1 IN RESEARCH OUTPUTS & #3 IN TOTAL RESEARCH INCOME

GLOBAL

RANKED 52nd IN THE WORLD BY GLOBAL QS RANKINGS 85th TIMES HIGHER ED

BEST

TOP IN FUNDING FOR MEDICAL RESEARCH IN 2014 TOP IN ARC RESEARCH FUNDING IN 2013

HIGHEST

CITATIONS PER PAPER OF ANY AUSTRALIAN UNIVERSITY IN 31 AREAS EXCHANGE

LAUNCHED EASY ACCESS IP, OFFERING MOST OF OUR INTELLECTUAL PROPERTY TO COMPANIES FOR FREE

QS Discipline Rankings UNSW 16 Disciplines World Top 50

Materials Science		
Civil & Structural Engineering		
Computer Science & Information Systems		
Electrical & Electronic Engineering		
Mechanical, Aeronautical & Manufacturing Engineering		
Chemical Engineering		
Pharmacology		
Psychology	15	
Economics & Econometrics		
Law	14	

International Symposium on Electrical Fatigue in Functional Materials 15. – 18.09.2014,

Motivation

Ferroelectric ceramics combine the characteristics of dielectrics, piezoelectrics and pyroelectrics in additional to ferroelectric properties

- \rightarrow High dielectric stability
- \rightarrow Coupled strain and dipole moment
- \rightarrow Temperature-dependent polarization
- \rightarrow Switchable polarization

Motivation

Piezoceramic Applications

- High-tech applications: sonar systems, medical diagnostics, telescopes,...
- Every-day devices: mobile phones, cameras, microphones,...

Market share of piezoelectric materials in 2012: US\$19.6 billion,

piezoelectric actuators alone about US\$6.5 billion in 2009

Motivation

- Many applications require cyclic input signal (electrical, mechanical, electromechanical)
- Long-term stability and reliability under cyclic loading is crucial
- Fatigue mechanisms have to be understood to be able to develop reliable components
- Research on <u>lead-free materials</u> focuses on improvement of strain and polarisation – not repeated use in applications

Gap in knowledge on fatigue of lead-free materials must be closed!

Fatigue characteristics

Electric fatigue of <u>lead-based materials</u> has been studied intensively Electrical cycling can lead to:

- Degradation of dielectric and piezoelectric parameters
- Asymmetries in hysteresis loops • ሌ Development of bias, field • 100 ing room temperature (b) 50°C C 3.2 x 10⁵ 0.4 80 100°C E_{bias} [V/mm] 175°C 0.3 polarization [C/m²] %] **.** 60 Strain, S 0.2 40 0.1 0.0 20 10⁸ 10³ 10⁴ 10⁷ 10 2000 -2000-10001000 O 2000 number of cycles Electric field, E [V/mm] E [V/mm]

Balkeneteala, J. AAppCePays., S20:1,02007, 90,43889

Fatigue characteristics

Origins of electric fatigue

- Development of cracks and dead layers
- Separation of the electrode
- Pinning of domain walls
- Miniaturization of domains
- Suppression of field induced phase trar

Stalketsmain et am, Jerppn. 1300/25, 22003, 988, 3869109-21 eteg setaduel al polystarte a product of the stal second

1 µm

Lead-free ceramics

Research on lead-free replacements for PZT focussed on:

- $BaTiO_3$ -based materials, e.g. (Ba,Ca)(Zr,Ti)O_3
- (Bi,Na)TiO₃-BaTiO₃
- (K_{0.5}Na_{0.5})NbO₃

\rightarrow			
	$(BI.Na) IIO_{2}$	5a 110 ₂ -(n	$\sqrt{(Na)}$
	(= -;		-,

composition	d ₃₃ [pm/V]	0.5	
Soft PZT	300-670	0.4	
BaTiO ₃	191		
(Bi,Na)TiO ₃ -6BaTiO ₃ (BNT-6BT)	122	ain [%]	
93BNT- 6BT-1(K,Na)NbO ₃	200		
Ba(Ti _{0.8} Zr _{0.2})O ₃ -(Ba _{0.7} Ca _{0.3})TiO ₃ (BCZT)	620	0.1 BNT-6BT - 91BNT-6BT-3KNN (Ba _{0.94} Ca _{0.06})(Zr _{0.105} Ti _{0.85} D ₈ soft PZT (PIC 151)	
(K _{0.5} Na _{0.5})NbO ₃ + Li, Ta, Sb (LF4)	300	0.0	

Lead-free relaxor ceramics

Many promising lead-free compositions show relaxor-type behavior

E-T behaviour plays important role in fatigue degradation

BNT-6BT Macroscopic properties

- Coercive field $E_c \sim 3kV/mm$
- Remanent polarization $P_r \sim 30 \mu C/cm^2$
- Unipolar strain ~ 0.1% @ 5.5kV/mm

BNT-6BT Bipolar fatigue

Simons et al., J. Appl. Phys. 112, 044101 (2012)

BNT-6BT Bipolar fatigue

Two regions can be distinguished

Region I. (up to 100 cycles):

- Slight decrease of P_{max} and P_{rem}
- Increase of E_c

Region II. (more than 100 cycles):

- Stronger decrease of P values
- Decrease of E_c

BNT-6BT Bipolar faitgue

- Strong decrease up to 100 cycles
- Reduced rate of decrease above 100 cycles
- Frequency independent characteristic

Simons et al., J. Appl. Phys. 112, 044101 (2012)

BNT-6BT Stuctural properties

Higher cycles:

Long-range order destroyed, patterns appear pseudo-cubic again

Initial cycles:

Rhombohedral/tetragonal domain structures created

<u>Unpoled state:</u> pseudo-cubic structure

Fatigue mechanism

Fatigue process:

- 1. Defects migrate under bipolar electric fields
- 2. Domain walls pinned by defect agglomerates
- 3. New domain walls compensate internal fields

Fatigue effects:

- Average domain size decreases
- Domain wall mobility decreases
- Polarization and strain decrease

Simons et al., J. Appl. Phys. 112, 044101 (2012)

Fatigue recovery: polishing effect

Bipolar cycling for 10^6 cycles Then removal of ~150µm material near electrodes

Z. Luo at el, J. Am. Ceramic Soc., 95, (2012), 2593

BNT-6BT + Cu

Improvement of cyclic stability by addition of 1 mol% Cu

BNT-BT-KNN Macroscopic properties

Addition of KNN to BNT-6BT leads to

- pinching of the polarization loops
- development of "sprout" shape strain hysteresis

Dittmer et al., Adv. Func. Mater., 2012, 22, 4208-4215

BNT-BT-KNN Fatigue characteristics

<u>93BNT-6BT-1KNN</u>

- Similar bipolar and unipolar fatigue characteristics to BNT-6BT
- Unfatigued hysteresis loops show slight anomalies
- Fits model of charge carrier accumulation and domain wall pinning

Z. Luo et al, J. Am. Ceramic Soc., 94, (2011), 3927

BNT-BT-KNN Fatigue characteristics

<u>91BNT-6BT-<mark>6</mark>KNN</u>

- Unfatigued loops are strongly pinched
- Only slight changes due to unipolar and bipolar cycling

Bipolar cycling

Unipolar cycling

Origins of fatigue

<u>94BNT-6BT</u>

91BNT-6BT-3KNN

BNT-BT based materials: Fatigue Mechanism

BNT-6BT should be fatigue-free at higher temperatures

BNT-6BT Temperature-dependent properties

Transition from non-Ergodic \rightarrow Ergodic relaxor @ T₀=83°C

- Electric field induced transformation becomes reversible
- i.e. destabilization of the ferroelectric phase when electric field removed

<u>Bipolar fatigue</u>: f = 10 Hz, $E_{max} = 1.5 \text{ E}_{c}$ <u>Temperatures</u>: 25°C, 45°C, 65°C, 85°C

Electrical

Polarization/Strain: f = 10 Hz, $E_{max} = 1.5 E_{c}$ Permittivity ε_{33} : f =10³/10⁴ kHz, E_{AC} =10 V/mm

STRUCTURAL

Wombat (ANSTO, Australia) *Neutron diffraction:* Constant wavelength: λ=2.95Å Texture: 180° @ 10° increments

BNT-6BT Temperature-dependent fatigue

Structure measurements

<u>Initial cycles:</u> Rhombohedral/tetragonal domain structures created <u>Higher cycles:</u> Domains fragment, long-range order destroyed <u>Increasing temperature:</u> Poling more difficult, but persists longer

BNT-6BT Temperature-dependent fatigue

25°C (Ferroelectric/Non-Ergodic):

Initial strain decrease due to ferroelectric
 →relaxor transition

<u>45-85°C (Non-Ergodic→Ergodic)</u>

- Fatigue at 45 & 65°C
- Rate of fatigue decreases as temperature increases
- I.e. rate of fatigue decreases as Non-Ergodic
 → Ergodic transition approached

BNT-6BT Temperature-dependent fatigue

25°C (Ferroelectric/Non-Ergodic):

- ε₃₃ decrease in initial cycles due to relaxor→ferroelectric transition
- Steady-state ε_{33} fatigue after 10² cycles

<u>45-85°C (Non-Ergodic→Ergodic)</u>

- Permittivity increases with temperature
- Transition from ferroelectric→relaxor
- Initial ε₃₃ drop lessens with temperature:
 i.e. less material transforming to ferroelectric state near transition

Ferroelectric lead-free ceramic (Ba,Ca)(Zr,Ti)O₃

- Ferroelectric for Zr content < 20%
- Shows relaxor features for higher Zr content
- Low coercive field
- Remanent Strain ~ 12µC/cm²
- Maximum Strain < 0.1%

Permittivity ϵ_r and piezoelectric coefficient d_{33} comparable to soft PZT

BCZT d₃₃ vs. composition

Compositions along tie line show highest piezoelectric coefficient d_{33}

Y. Zhang et al., J. Amer. Ceram. Soc., 2014, 97, 2885

BCZT Phase transitions

All investigated compositions show rhomb. \rightarrow orth. \rightarrow tetr. transitions around room temperature

Zhang et al., J. Amer. Ceram. Soc., 2014, 97, 2885 Keeble, Appl. Phys. Lett., 2013, 102, 092903

BCZT Phase transitions

Orthorhombictetragonal phase transition temperature

Zhang et al., J. Amer. Ceram. Soc., 2014, 97, 2885

BCZT Mechanical pressure

Piezoelectric performance is susceptible to mechanical loading

- rhombohedral and MPB compositions more than tetragonal ones
- reduction in d₃₃ determined by ferroelastic switching and reduction of domain wall density
 200_{pc}
 222_{pc}

- S_{max}
- Permittivity ϵ_r

Significantly less reduction of polarization compared to soft PZT

Slightly stronger polarization degradation compared to soft PZT

Comparable development of the internal bias field E_{bias}

Similar strain asymmetry compared to soft PZT

BCZT Fatigue mechanism

Unipolar fatigue

- Characteristics comparable to soft PZT
- Explainable by charge carrier accumulation

Bipolar fatigue

- In contrast to PZT only slight polarization degradation is observed
- No mechanical degradation observed
- If domain wall pinning occurs, it is only a weak effect

Summary

- Cyclic fatigue behaviour of lead-free piezoceramics elucidated: BNT-BT; BNT-KNN-BT; BCZT
- Cyclic fatigue degradation occurs in lead-free piezoceramics
- Dependence upon the electric field temperature phase diagram
- Mechanisms:
 - Domain wall pinning
 - Domain fragmentation
 - \circ Domain structure vanishes (T>T₀)

Acknowledgements

Julia Glaum **Jacob Jones** Manuel Hinterstein John Daniel Jerry Luo Matthias Emkhe Andreas Leiss Soodkhet Pojprapai Yichi Zhang

Hugh Simons Juergen Roedel Wook Jo **Torsten Granzow** Keith Bowman John Blendell Andrew Studer Michael J Hoffman

Acknowledgements

Julia Glaum **Jacob Jones** Manuel Hinterstein John Daniel Jerry Luo Matthias Emkhe Andreas Leiss Soodkhet Pojprapai Yichi Zhang

Hugh Simons Juergen Roedel Wook Jo **Torsten Granzow** Keith Bowman John Blendell Andrew Studer Michael J Hoffmann

