# **Developing Lead-Free Piezoceramics**



TECHNISCHE UNIVERSITÄT DARMSTADT

## Jürgen Rödel

Institute of Materials Science Technische Universität Darmstadt Germany



#### Outline



I. Introduction Ferroelectrics Division (2)

**Projects and Teams** 

II. Lead-Free Piezoceramics (3)

Legislation and History

III. BNT-Based Relaxors (13)

Structure and Electrical Properties

IV. BCT-BZT Based Ceramics (7)

**Room Temperature Applications** 

V. KNN-Based Ceramics (4)

**Temperature Stability** 

VI. Transfer (3)

#### Ferroelectrics: starting projects – 2003 5 projects ended





#### Ferroelectrics: current projects – 2014 4 new projects started





# Legislation



# RoHS II

Lead-containing piezoelectric devices

Category 7

Lead-containing piezoelectric devices

ELV

Category 10 (a)

Exemptions expire latest after maximum validity period

5 years (July 2016) Categories 1-7,10

**Continuous process** 

#### UNLESS INDUSTRY REQUESTS CONTINUATION!

#### 18 MONTHS PRIOR TO EXPIRY → Next revision for INDUSTRY July 2016

EU-Directive 2000/53/EC: ELV. Off. J. Eur. Un. 2000;L 269:34 //EU-Directive 2011/65/EU: RoHS II. Off. J. Eur. Un. 2011;L 174:88

#### **History of lead-free piezoceramics**



|  | KNN-based                                                                                        |                                                                                 | BNT-based                                                               | Other                                                          |                                         |
|--|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|
|  | <b>1954</b> 1 <sup>st</sup> report KNN (Shirane et al.)<br><b>1959</b> Piezoelectric data of KNN |                                                                                 | <b>1957</b> BKT discovery (Popper et al.)<br><b>1960</b> BKT properties | <b>1945</b> BaTiO <sub>3</sub><br>piezo transducer<br>(patent) | <b>1945</b> Poling<br>process<br>(Gray) |
|  |                                                                                                  |                                                                                 |                                                                         | 11110 19505 PZ1 CE                                             |                                         |
|  |                                                                                                  |                                                                                 | <b>1991</b> BNT-BT (Takenaka et al.)                                    |                                                                |                                         |
|  |                                                                                                  |                                                                                 | <b>1996</b> BNT-BKT (Elkechai et al.)                                   | 2001 EU LEAF project                                           |                                         |
|  | 2004 LF42compositiontill(Saito et al.)e(1)(1)                                                    | <b>2004</b> Improving<br>the sintering,<br>e.g. Cu-doping<br>(Matsubara et al.) | 2007 BNT-BT-KNN (Zhang et al.)                                          | 2003 1 <sup>st</sup> EU legislative                            |                                         |
|  |                                                                                                  |                                                                                 |                                                                         |                                                                |                                         |
|  | <b>2013</b> Temperature-insensitive strain in KNN (Wang et al.)                                  |                                                                                 | <b>2009</b> hard BNT-BT for ultrasonic cleaners (Tou et al.)            | 2009 BCT-BZT (Liu, Ren)                                        |                                         |
|  |                                                                                                  |                                                                                 |                                                                         |                                                                |                                         |
|  | <b>2014</b> KNN+ Ni electrodes (Liu et al.)                                                      |                                                                                 | <b>2014</b> Mn- and Fe-doped BNT-<br>BKT-BLT (Taghaddos et al.)         | <b>2014</b> BCT-BZT high $d_{33}^*$ (Ehmke et al.)             |                                         |

#### **Publications on lead-free piezoceramics**







# **BNT-based**



**TECHNISCHE** 





Sapper et al., J. Appl. Phys. 115, 194104 (2014)

**TECHNISCHE** 





Pedro Braga-Groszewicz, submitted to PRL

### **Atomic Structure of BNT**

C1







- Zero pressure: BNT is structurally frustrated
- Ab initio calculations suggest the existence of chemically ordered nanoregions (CNR)
- Matrix: R3c-like CNR: Pbnm-like

Gröting et al., Phys. Rev. B. 86, 134118 (2012)



**Diffuse scattering BNT-4BT single crystal** 

**B**3

**TECHNISCHE** 

UNIVERSITÄT

### TEM as f(T) in BNT-6BT-1KNN

A1, B3





Jürgen Rödel | TU Darmstadt | Materials Science – Ceramics Group | 16



#### 94BNT-5BT-1KNN

Kling et al., J. Am. Ceram. Soc. 96, 3312 (2013)



no remanent strain



 $\mathcal{E}_{R}$ 

 $\sigma_0$ 

(a)

25 °C

190 °C

200 °C

215 °C

-50

-100

-150

-200

-250

-300

-350

-400

-50-

-100·

P4/bm

Stress (MPa)









Uniaxial compressive stress: ۲ Field-induced P4/mmm to P4/bm  $\rightarrow$ oxygen octahedral tilting →stress induced phase transition







Jo et al., J. Electroceram. 29, 71-93 (2012)



#### Mechanism:

- Electric field → seed gets poled first → propagates polarization to matrix → core gets "easier" poled ≙ polarization at lower fields (E<sub>pol</sub> ↓)
- Only small amounts of shell required (nuclei of polarization) → maintain the high strain of matrix

Jürgen Rödel | TU Darmstadt | Materials Science – Ceramics Group | 19

Groh et al., Adv. Funct. Mat. 24, 336-362 (2014)

# **Coupling mechanisms**

A1, C. Groh Haibo Zhang (AvH)

Strain coupling



TECHNISCHE UNIVERSITÄT DARMSTADT

#### Polarization coupling





# **BZT-BCT**





## $Ba(Zr_{0.2}Ti_{0.8})O_3 - x(Ba_{0.7}Ca_{0.3})TiO_3$



Acosta et al., Acta Mater. 80, 48-55 (2014)

Keeble et al., Appl. Phys. Lett. 102, 092903 (2013)





Applications limited below 95 °C at x=0.6 → d<sub>33</sub>~300 pC/N

Jürgen Rödel | TU Darmstadt | Materials Science – Ceramics Group | 23

Acosta et al., Acta Mater. 80, 48-55 (2014)



Acosta et al., Acta Mater. 80, 48-55 (2014)



H.Guo, X.Tan, Iowa State University, USA



Zhukov et al. Appl. Phys. Lett. 103, 152904 (2013)

#### BZT-BCT under uniaxial compressive stress

A1, M. Ehmke Purdue Univ., USA





#### BNT-40BCT

- Stress < 50 MPa increasing  $d_{33}^*$  at low E and T
- Mechanical loading: *E* stabilizes domains parallel to stress
- Moderate stresses: favour strain
  - $\rightarrow$  *E* is large enough to reorient ferroelastically switched domains



# **KNN-based**

# Temperature-Insensitive Strain in modified KNN





Jürgen Rödel | TU Darmstadt | Materials Science – Ceramics Group | 29

Ke Wang *et al.,* Adv. Funct. Mater. 23, 4079-86 (2013)



J. Zushi, R. Wang et al., Jpn .J. Appl. Phys., 52 (2013)

#### **Ruiping Wang** MPB composition 9262BBL (AIST, Tsukuba, Japan) 700 Piezoelectric constant (pm/V) d<sub>33</sub> at 10 Hz 600 small signal $d_{33}$ 500 –large signal d\* 33 400 @2kV/mm 300 200 0.92(Na<sub>0.5</sub>K<sub>0.5</sub>)NbO<sub>3</sub>-Δ xBaZrO<sub>3</sub>-100 Δ (0.08-x)(Bi<sub>0.5</sub>Li<sub>0.5</sub>)TiO<sub>3</sub> 0 50 0 100 150 200 250 300 Temperature (°C)

## $d_{33}(T)$ in KNN-based MPB material

TECHNISCHE UNIVERSITÄT DARMSTADT

Jürgen Rödel | TU Darmstadt | Materials Science - Ceramics Group | 31

R. Wang et al., unpublished

# Summary: Innovation management



# Legislation trigger Peak of inflated expectations Trough of disillusionment Transfer enlightenment

#### **Worldwide Research Trend**





#### **Industrial Development**





### Acknowledgements



#### **TU Darmstadt:**

**W. Jo**, R. Dittmer, S. Schaab, T. Granzow, J. Glaum, E. Anton, E. Sapper, S. Zhang, J. Chen, E. Aulbach, D. Isaia, C. Groh, M. Acosta, J. Zang, H. Zhang, J. Kling, L. Schmitt, M. Hinterstein, A. Kleebe, W. Donner, H. v.Seggern, G. Buntkowsky, P. Braga-Groszewicz, K. Webber. S. Zhukov



M. Ehmke, J. Blendell, (Purdue, USA), K.J. Bowman, (IIT, USA) Single crystals (BNT-BT):

D. Rytz (FEE, Germany)