### Aging and fatigue in ferroelectrics: experimental results and current understanding



Y.A. Genenko, J. Glaum, M.J. Hoffmann and K. Albe

Final Symposium of SFB 595, Sellin, September 2014

### Layout



- State-of-the-art at the beginning of the collaborative research (2003)
- Experimental results
- Modelling
- Actual understanding

### **Material systems studied**





 $(a) \ Pb[Zr_{1-x}Ti_{x}]O_{3} \ (PZT) \ (from \ Ref. \ [6]) \ (b) \ [Bi_{1/2}Na_{1/2}]TiO_{3} \\ -BaTiO_{3} \ (BNT-BT) \ (from \ Ref. \ [17])) \ [K_{x}, Na_{1-x}]NbO_{3} \ (KNN) \ (from \ Ref. \ [6]) \ (b) \ [Bi_{1/2}Na_{1/2}]TiO_{3} \\ -BaTiO_{3} \ (BNT-BT) \ (from \ Ref. \ [17])) \ [K_{x}, Na_{1-x}]NbO_{3} \ (KNN) \ (from \ Ref. \ [6]) \ (b) \ [Bi_{1/2}Na_{1/2}]TiO_{3} \\ -BaTiO_{3} \ (BNT-BT) \ (from \ Ref. \ [17])) \ [K_{x}, Na_{1-x}]NbO_{3} \ (KNN) \ (from \ Ref. \ [6]) \ (b) \ [Bi_{1/2}Na_{1/2}]TiO_{3} \\ -BaTiO_{3} \ (BNT-BT) \ (from \ Ref. \ [17])) \ [K_{x}, Na_{1-x}]NbO_{3} \ (KNN) \ (from \ Ref. \ [6]) \ (b) \ [Bi_{1/2}Na_{1/2}]TiO_{3} \\ -BaTiO_{3} \ (BNT-BT) \ (from \ Ref. \ [17])) \ [K_{x}, Na_{1-x}]NbO_{3} \ (KNN) \ (from \ Ref. \ [6]) \ (b) \ (from \ Ref. \ [6]) \ (from \ Ref. \ (from \ Ref. \ [6]) \ (from \ Ref. \ (from \ Ref. \ [6]) \ (from \ Ref. \ [6]) \ (from \ Ref. \ (from \ Ref. \ (from \ Ref. \ Ref. \ (from \ Ref. \ (from$ 

#### This talk is about bulk PZT and BT

### **Historical notes**



### The earliest observations of aging (degradation at equilibrium conditions)

Bogoroditskii & Verbitskaya (1952) Novosiltsev, Khodakov & Shulman (1952) Kambe (1953)

### First concepts of aging

Mason (1955) (Slow temperature-induced motion of domain walls) Plessner (1956) (A wide distribution of activation energies, reflecting the random character of obstacles to domain wall motion in a ceramic, yields the log(t) law) Takahashi (1970) (Space charge effect) Lambeck & Jonker (1978) (Re-orientation of polar defects)

# The earliest observations of fatigue (gradual degradation during cycling loading)

Merz & Anderson (1955) Anderson et al. (1955) Taylor (1967)

#### First concepts of fatigue

Yoo & Desu (1992) (Defect migration to electrodes) Brennan (1993) (Defect accumulation and DW pinning) Dawber & Scott (2000) (Defect re-arrangement)

## Classical experiments on aging: degradation of permittivity



 $(Ba_{0.9}Sr_{0.1})TiO_3 + 0.5\% MgF_2$ D-03 2000 1500 0 02 Permittivity Ś tar 10-01 1000 tan ô 500 0·01 5 10 50 100 0-05 0-1 0.5 1.0 500 1000 5000 Time (days)

Plessner, Proc. Phys. Soc. Lon. B 69, 1261 (1956)

 $Pb(Zr_{58},Ti_{42})_{1-x}Fe_xO3$ 



Herbiet et al., Ferroelectrics 76, 319 (1987)

## Classical experiments on aging: internal bias field

TECHNISCHE UNIVERSITÄT DARMSTADT



Carl & Härdtl, Ferroelectrics 76, 319 (1978)

Arlt & Neumann, Ferroelectrics 87, 109 (1988)

### **Classical experiments on aging: de-aging**





FIGURE 11 Temperature dependence of the relaxation time,  $\tau$ , of Pb(Ti<sub>0.42</sub>Zr<sub>0.58</sub>)O<sub>3</sub> specimens doped with Mn, Al, and Fe.

E<sub>A</sub>=0.6-0.7 eV for (Mn and Fe) and 0.8 eV for AI in PZT

Carl & Härdtl, Ferroelectrics 76, 319 (1978)

### Recent experiments on aging and de-aging





Domain structure evolution during poling

Permittivity evolution during heat treatment



E<sub>A</sub>=0.43 eV (for Mn)

#### Zhang and Ren, PRB 71 (2005) 174108

Zhou et al., J. Phys.: Condens. Matter 25, 435901 (2013)

### **Typical fatigue behaviour**





Carl, Ferroelectrics **9**, 23 (1975)

Lupascu & Rödel, Adv. Eng. Mat. 7, 882 (2005)

### Strategy of fatigue studies



**Particular factors Different Regimes** 2+(a) (d) Field amplitude, frequency **DC** electric load and cycle number time -2 -Unipolar electric load in-phase (e) †1 2-'(b) Influence of temperature σ/σ<sub>max</sub> E/E Sesquipolar electric load Role of electrodes -2 out-of-phase (c) **Bipolar electric load** 0 Doping and defects -1 **Electromechanic load** 

Lupascu and Rödel, Adv. Eng. Mat. 7, 882 (2005)



## Unipolar, bipolar, sesquipolar and DC conditions of electric load







### **Cycling with electromechanic loading**

TECHNISCHE UNIVERSITÄT DARMSTADT

## Effects of the field amplitude, frequency and cycle number



Increasing frequency reduces crack growth in soft PZT



Pojprapai et al., Acta Mat. 57 (2009) 3932



Balke et al. JAP **105**, 104105 (2009)



Balke et al. JACS 90, 1081 (2007)

An increasing cycling field amplitude above the coercive field leads to stronger degradation of both dielectric and piezoelectric parameters of PZT-5H (Wang et al., JAP **83**, 5342 (1998)

### **Temperature influence on fatigue**



**B3,D1** 



## Impact of electrodes: injection barriers from X-ray photoemission spectra





Barrier heights strongly depend on electrode material
Barrier heights with Pt vary by ~1eV depending on pO<sub>2</sub>

Chen et al. J. Phys. D: Appl. Phys. 42 (2009) 215302; 43 (2010) 295301; JAP 108 (2010) 104106

## Fatigue in PIC 151 with Pt, RuO<sub>2</sub>, ITO and Ag electrodes



TECHNISCHE UNIVERSITÄT

DARMSTADT

Chen et al. JAP **108**, 104106 (2010)

## Experimental verification of fatigue models by different methods



Anticipated origins of fatigue can be separated in two main groups:

- Occurrence of microstructural changes such as crack initiation or element migration (irreversible, meso- to macroscopic)
- Alteration of domain wall motion due to polar defect alignment and/or charge carrier agglomeration (reversible, micro- to mesoscopic)

#### Methods implemented:

Optical microscopy, high-resolution synchrotron radiation, EDX, HRSEM, TEM, EPR, NMR, pulse electric measuremenets etc.

### Fatigue of the near electrode region in PZT





## Structural changes during electrical loading by using in-situ high resolution synchrotron radiation



B3,T2

TECHNISCHE UNIVERSITÄT

DARMSTADT



### **TECHNISCHE Crack formation in heavily doped PZT** UNIVERSITÄT DARMSTADT B7,C5,D1 10<sup>7</sup> cycles fresh ceramic SEM 10<sup>8</sup> cycles (3) an

5

Zhukov et al. JAP 108, 014105 (2010)

## Ionic and electronic processes behind reversible fatigue and aging





Erhart et al., PRB 88, 0124107 (2013)







Erhart & Albe, J. Appl. Phys. 104, 044315 (2008)





Activation barriers for oxygen motion in bulk  $E_A \sim 1.2 \text{ eV}$  in grain boundaries  $E_A \sim 0.66 \text{ eV}$ 

Gottschalk et al., JAP 104, 114106 (2008)

#### **B2**

TECHNISCHE UNIVERSITÄT DARMSTADT

## Defect dipole formation, position and orientation from ESR and DFT





Eichel et al., JAP **95**, 8092 (2004) Jakes et al., APL **98**, 072907 (2011) Erhart et al., PRB 76, 174116 (2007); 88, 024107 (2013)

### DFT analysis of defect dipole switching barriers and alignment kinetics in doped PT



Erhart et al., PRB 88, 024107 (2013)



 $10^{7}$ 

10<sup>1</sup>

Time (s)

26

Inverse temperature (1/K)

22

TECHNISCHE UNIVERSITÄT DARMSTADT

## Drift-diffusion model of aging in unpoled polycrystalline ferroelectrics I





#### Main assumptions of the model

- Presence of local depolarization fields at some domain faces
- Existence of sufficient amount of mobile charge carriers (presumably, oxygen vacancies) in the bulk material
- Stability of the domain structure during the charge migration

#### **Basic equations**

$$\frac{\partial c}{\partial t} = -\nabla \left(\mu c \mathbf{F}\right) + D\Delta c$$
$$\nabla \mathbf{F} = \frac{q_f}{\varepsilon_r \varepsilon_0} \left(c - c_0\right)$$

Low doping limit: Genenko & Lupascu, PRB 75, 184107 (2007); Genenko et al. Ferroelctrics 370, 196 (2008)

## Drift-diffusion model of aging in unpoled polycrystalline ferroelectrics II





## Drift-diffusion model of aging in poled polycrystalline (PZT) ferroelectrics





## Deformation of domains due to agglomeration of charge defects: phase-field modelling





### **Prospects in phase-field modeling: migration of oxygen vacancies in domain structures**







Self-organized stripe domain structure exhibit strong remanent depolarization fields which should further drive mobile charged defects

Zuo et al., JAP 115, 084110 (2014)

### After all: migration of charge defects or re-orientation of defect dipoles?





Long-range migration

Short-range migration



#### Both mechanisms contribute to aging and fatigue with distinct aging times and activation energies

Glaum et al., JAP **112**, 034103 (2012)



## Thank you for your attention!