Do TCOs contribute to electrical fatigue of organic LEDs

Andreas Klein Surface Science (D3)

Karsten Albe Materials Modelling (C2)

TECHNISCHE UNIVERSITÄT DARMSTADT

What is a TCO

- Optical transparent material by large band gap
- Highly conducting material by degenerate doping
- \rightarrow Doped ZnO, SnO₂, In₂O₃

In₂O₃:Sn (ITO)

- Highest conductivity and transparency of TCO materials
- Good structurability by chemical etching
- Surface properties modified by oxidation treatments (increase of work function)
- Bixbyite crystal structure with 80 atom unit cell and plenty interstitial positions
- Typically 10 mole% SnO₂ doping
- Sn dopants mainly compensated by interstitial oxygen

Self-compensation

- The formation of defects requires a certain amount of energy ΔH_{def}
- The charge state of the defect depends on the Fermi level position

Compensating defects (O_i in ITO) are formed spontaneously only when the Fermi energy is deep in the conduction band

Oxygen vacancies

»Indium oxide and tin oxide are truly intrinsically n-type semiconductors

>The behavior is more complex for ZnO

Compensating acceptors

- Charged oxygen interstitials are very unfavorable in SnO₂
- > Oxygen transport only via oxygen vacancies in SnO₂
- Stability of acceptor defects increases with increasing Fermi energy

16.09.2014 | SFB Symposium Sellin | Andreas Klein | 6

J Appl Phys 108 (2010) 053511

Possible contributions to fatigue

Change of injection barrier during operation

- Change of work function
 - \rightarrow surface termination
 - → Fermi level position (oxygen concentration)
- Interfacial reaction
- Release of oxygen
 - Chemical decomposition of organic
 - Change of TCO conductivity
 - Oxygen exchange → surface vs. diffusion limitation

Performed work

- Experimental
 - Systematic determination of TCO work functions
 - Interfaces between ITO and organic semiconductors
 - Conductivity relaxation experiments (oxygen exchange)
 - Building test OLEDs and study fatigue behaviour (→ D4)
- Theoretical
 - Thermodynamics of point defects in ZnO, In₂O₃ and SnO₂
 - Anion and cation diffusion in ZnO and In₂O₃
 - Thermodynamics of surface structures of In₂O₃ and SnO₂
 - Defect at (101) twin boundary in SnO₂
 - Adsorption behaviour of organic compounds

DAISY-MAT (XPS/UPS + preparation)

TECHNISCHE UNIVERSITÄT DARMSTADT

TCO work functions

Large variation of work function due to changes in Fermi level position, surface orientation and termination

Types of surfaces

a) Tasker type 1

b) Tasker type 2

In ₂ O ₃ (110)	In ₂ O ₃ (111)	In ₂ O ₃ (100)	
non-polar	polar - stable	polar - unstable	
stoichiometric	stoichiometric	non-stoichiometric	
stable composition	stable composition	variable composition	

In₂O₃ surfaces

16.09.2014 | SFB Symposium Sellin | Andreas Klein | 13

J Phys CM 23 (2011) 334203

strong increase in work function initial dipole formation Change to anion-terminated surface ?

16.09.2014 | SFB Symposium Sellin | Andreas Klein | 14

ITO/Al₂O₃ interface

Phys Chem Chem Phys 11 (2009) 3049

TECHNISCHE

UNIVERSITÄT

ITO/organic interface

O-intersticialcy diffusion in ZnO

Oxygen diffusion in ZnO

Interstitialcy mechanism, neutral and positive charge states

Dependence of diffusivity on Fermi level and chemical potential

16.09.2014 | SFB Symposium Sellin | Andreas Klein | 17

Phys Rev B 73 (2005) 115207

Zn diffusion in ZnO

- Hierarchy of mobilities:
 - zinc interstitials
 - oxygen interstitials
 - zinc vacancies
 - oxygen vacancies

Diffusion in In₂O₃

Diffusion in In₂O₃

16.09.2014 | SFB Symposium Sellin | Andreas Klein | 20

Phys Rev B 81 (2010) 195205

Conductivity relaxation

Surface oxygen exchange reaction

Conductivity depends on oxygen pressure
 Slope related to dominant defect species

Hall effect and conductivity relaxation

Hall effect measurement of ITO

- Changes much slower than expected from oxygen diffusion
- Changes not monotonic
- → Cation diffusion is also involved
- Agrees with pO₂ dependent Sn segregation from XPS

Exchange at SnO₂ possible with 1nm In₂O₃ on surface

ITO conductivity during OLED operation

1st step: new contacting method in order to assure reproducibility

2nd step: remeasure, also with ITOs with different oxygen content:

ΙΤΟ	Conductivity [S/cm]	concentration [1/cm ³]	Mobility µ [cm²/Vs]
Commercial ITO	7400	1E+21	40
Commercial ITO after lithography	5800	1E+21	35
most reduced ITO 100% Ar	7700	1E+21	41
ITO 1% O ₂	1900	3E+20	36
ITO 10% O ₂	70	3E+19	17

Summary

- Carrier concentration in TCOs determined by doping and intrinsic defects (self-compensation)
- Work function determined by doping, surface orientation and surface termination
 - → Inhomogeneous work function (charge injection)
- Oxygen exchange at ITO limited by bulk diffusion and not by surface exchange coefficient in contrast to SnO₂
 - \rightarrow Oxygen exchange in principle also at T < 200°C
- → No dominant influence of ITO electrode on OLED fatigue identified

Contributors

- Ph.D. students
 - Paul Erhart, Péter Ágoston, Arno Fey, Yvonne Gassenbauer, André Wachau, Mareike Frischbier (Hohmann)
- Bachelor, Master, Diploma students
 - Péter Ágoston, Arno Fey, Thorsten Bayer, Kai Kühne, André Wachau, Mareike Hohmann, Karsten Rachut, Hans Wardenga, Robert Schafranek, Mirko Weidner, Timo Noll, Jonas Deuermeier
- International cooperations
 - T.O. Mason (Northwestern University), R.G. Egdell (Oxford),
 Y. Shigesato (Yokohama), R. Nieminen, K. Nordlund (Helsinki)

Publication Highlights

7 joint publications with 432 citations34 publication of project D3 with 1253 citations

Relaxation setup

Discussing the carrier concentration

Gassenbauer, Y., et al. (2006). Physical Review B 73: 245312.

Discussing the carrier concentration

Effects affecting carrier concentration *n*: oxygen incorporation Sn segregation **n** _ $T\mu_{0} = \mu_{0} + RT \ln$ n

$$O_{i}^{"} + 2Sn_{in}^{"}$$

$$\frac{1}{2}O_{2} + 2Sn_{in}^{"} + 2e^{i}$$

$$\frac{1}{2}O_{2} + 2Sn_{seg}^{"}$$

First ideas on complex interplay of several effects

 Surface oxidation (e.g. via ozone) only possible for (100) orientation

16.09.2014 | SFB Symposium Sellin | Andreas Klein | 34

3.5

3.0

E_F-E_{VB} [eV]

2.5

2.0

J. Phys. CM 23 (2011) 334203

Doping limit of ITO (In₂O₃:Sn)

Self-compensation provides a natural explanation for the transition from electronic to ionic compensation of Sn_{In}

16.09.2014 | SFB Symposium Sellin | Andreas Klein | 35

J Am Ceram Soc 96 (2013) 331

Fermi level of TCO films

16.09.2014 | SFB Symposium Sellin | Andreas Klein | 36

J. Am. Ceram. Soc. 96 (2013) 331

 $E_{F}-E_{VB}$ [eV]

doping

Work function affected by Fermi level and ionisation potential

E_{VB}

Band gap of In₂O₃ and ITO

- $\succ \Delta E_{F} (XPS) \sim \Delta E_{F} (optic)$
- ➢ Fundamental gap E_g ~ 2.8 eV

Conductivity and carrier concentration

Conductivity $\sigma = en\mu_e + ep\mu_h$

Electron concentration

$$n = \int_{E_{CB}}^{\infty} D(E) f(E) dE$$

Non-degenerate semiconductors

$$\rightarrow$$
 E_{CB}-E_F > 3 k_BT

$$n = N_C \exp\left(-\frac{E_{CB} - E_F}{kT}\right)$$

Electrical conductivity determined by carrier concentration Carrier concentration determined by Fermi level position

Optical properties

I: Burstein-Moss shift

II: Free-carrier induced infrared absorption

Plasmon energy (Drude theory): $\omega^2 \approx \frac{n \cdot e^2}{\varepsilon_0 \cdot m^*} \sim 0.5 eV$

data: K. Orgassa, IPE Stuttgart

TCO applications

Energy band alignment at interfaces important for function

Topics

- Transparent conducting oxides
 - Basic electrical and optical properties
 - Applications and importance of surfaces and interfaces
- Experimental Approach
- Surface Properties
 - Work function and ionization potential
 - Oxygen exchange
- Interface properties
 - Energy band alignment
 - Redox processes at interface

Photoemission (XPS, UPS) – Basics

Surface vs. Bulk Fermi level

Fermi level in bulk corresponds with Fermi level at surface

Photoemission – Semiconductors

In-situ vs. ex-situ

16.09.2014 | SFB Symposium Sellin | Andreas Klein | 47

J. Am. Ceram. Soc. 96 (2013) 331

Topics

- Transparent conducting oxides
 - Basic electrical and optical properties
 - Applications and importance of surfaces and interfaces
- Experimental Approach
- Surface Properties
 - Work function and ionization potential
 - Oxygen exchange
- Interface properties
 - Energy band alignment
 - Redox processes at interface

Preferred orientation

Oxygen chemical potential [eV]

 Change of stable surface orientation with oxygen pressure

J. Phys. D 43 (2010) 055301

TECHNISCHE

UNIVERSITÄT DARMSTADT

ZnO – work function

to different surface orientation

orientation in deg

0

90

-90

16.09.2014 | SFB Symposium Sellin | Andreas Klein | TSF **518** (2009) 1197 Materials 3 (2010) 4892

SnO₂ – work function

Change of ionization potential with surface termination Change of surface termination with oxidation/reduction

16.09.2014 | SFB Symposium Sellin | Andreas Klein | TSF **518** (2009) 1197 Materials **3** (2010) 4892

TECHNISCHE

UNIVERSITÄT

Post deposition treatment

> Almost no change of σ with pO₂ at 400°C

> Equilibrium carrier concentration not achieved

Relaxation at low pressure

- > Relaxation observed when starting from reduced surface
- Saturated conductivity does not correlate with pO₂

Oxygen exchange of SnO₂

> Surface properties are crucial for oxygen exchange

Relaxation measurements

> Kinetics of oxygen exchange not accessible

Mobility and carrier concentration

- Carrier concentration
 (defect concentration) in
 equilibrium
- Carrier mobility different for differently prepared samples
- Possible influence of microstructure (texture, grain size, segregation)
- > Necessary to understand the evolution and the control of microstructure

Topics

- Transparent conducting oxides
 - Basic electrical and optical properties
 - Applications and importance of surfaces and interfaces
- Experimental Approach
- Surface Properties
 - Work function and ionization potential
 - Oxygen exchange
- Interface properties
 - Energy band alignment
 - Redox processes at interface

Band alignment

 ΔE_{CB} : conduction band discontinuity (offset) ΔE_{VB} : valence band discontinuity (offset)

Energy band alignment described by band discontinuities
 Each material combination has characteristic alignment

Interface ITO/Al₂O₃

> Pinning in ALD-Al₂O₃ leads to modified band alignment

16.09.2014 | SFB Symposium Sellin | Andreas | PCCP **11** (2009) 3049, Chem. Mater. **24** (2012) 4503

SnO₂/Pt – interface chemistry

- 150°C: Sn⁰ <-> Sn⁴⁺ with intermediate Sn²⁺ state
- 100°C: Sn⁰ <-> Sn²⁺
- Oxidation/reduction not observable for
 - large Pt islands
 - bare SnO₂ surface

Reversible oxidation/reduction of Sn

Chemistry at buried interface

> Oxygen is reversibly transported to/from the interface > Barrier changes with oxidation/reduction

Summary

- Transparent Conducting Oxides are important technological materials
- Surface and Interface properties can be systematically adressed using photoelectron spectroscopy with in-situ sample preparation
- Work function and oxygen exchange determined by doping, surface orientation and surface termination
- Energy band alignment governed by orbital contribution to the valence band density of states
- Defects limit dopability and can modify the energy band alignment

Acknowledgement

- Frank Säuberlich, Yvonne Gassenbauer, Christoph Körber, André Wachau, Jürgen Gassmann, Mareike Hohmann, Thorsten Bayer, Jonas Deuermeier, Mirko Weidner, Anne Fuchs, Sebastian Siol
- Paul Erhart, Péter Ágoston, Karsten Albe (TUD Modelling)
- Steven P. Harvey, Diana E. Proffit, E. Mitch Hopper, Thomas O. Mason (Northwestern University)
- German Science Foundation (SFB 595) MWN program)
- BMBF (ZnO network project)
- State of Hessen (LOEWE center AdRIA)
- Work summarized in: J. Am. Ceram. Soc. 96, 331-345 (2013) Transparent Conducting Oxides: Electronic Structure – Property Relationship from Photoelectron Spectroscopy with in-situ Sample Preparation