$Bi_{1/2}Na_{1/2}TiO_3$ -SrTiO₃: A core-shell piezoceramic for actuator applications

M. Acosta¹, M. Scherrer¹, Michael Brilz¹, W. Jo², L. Molina-Luna¹, L. A. Schmitt¹, W. Donner¹, H. J. Kleebe¹, and J. Rödel¹

- ¹ Department of Geo- and Materials Science, Technische Universität Darmstadt, 64287, Darmstadt, Germany
- ² School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, 689-798, Ulsan, Republic of Korea

Connecting Dielectric and electromechanical properties of the $Bi_{1/2}Na_{1/2}TiO_3 - 25$ mol % SrTiO₃ were studied as a function of temperature and frequency. This material presents a $d_{33}^* \sim 600$ pm/V at 4 kV/mm for input frequencies ranging from 0.1 up to 100 Hz. The system constitutes a promising lead-free candidate to replace the Pb(Zr Ti _)O__ family in stack actuator

Delimiting

to 100 Hz. The system constitutes a promising lead-free candidate to replace the $Pb(Zr_xTi_{1-x})O_3$ family in stack actuator applications working in the large signal regime. The high strain of the system is attributed to a reversible electric-field induced phase transition from a mixed relaxor state (i.e., ergodic and non-ergodic coexisting states) to a ferroelectric one. The induced electric-field phase transition is aided by a core-shell structure. The core-shell evolution under field and temperature is studied by means of transmission electron microscopy and high resolution X-ray diffraction.

Electrical Characterization

Application-oriented research

Financial support from AdRIA and Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 595/D6. Collaborative research was performed with project B3.