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Temporal Phenomena in Organic Field-Effect
Transistors through Kelvin-Probe Force Microscopy
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The stability of organic field-effect transistors (OFETs) is not only an issue for future applications but needs to be considered for a proper device characterization. Here, the charging
and discharging of pentacene based OFETs are investigated with time dependent Kelvin-Probe Force Microscopy (KPFM) measurements performed in the vicinity of the charge
reversal points [1,2]. On the one hand, these measurements allow for the analysis of the often observed device hysteresis. On the other hand, at certain conditions, the
measurements can be used to perform transient experiments for the determination of the charge-carrier mobility valid during the charging of the device.
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Device Instabilit The device stability of pentacene based OFETs are investigated by KPFM in the spectroscopic
Y mode. The investigated device allows for an ambipolar carrier transport in the channel. Unipolarity
is defined via the Source and Drain contacts.
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The temporal response of the top-contact, 4v(Y) =4Y +v(Y) po +( p )
bottom-gate OFET under a voltage ramp
between source/drain and gate was modeled
with 2D FEM assuming drift / diffusion ~ ™
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Using the transmission-line model, the low carrier-

density mobility can be estimated. To merge the . _ L L,
two carrier fronts coming from the source and the VA4bu 3.5x107° cm?V-is Conclusions

drain, the time 7is required.

The carrier density and field dependent mobility can be determined with
transient KPFM by using:

F(x,t) =—0,¢(x,t)

For p-type pentacene devices, the remanent charging of the transistor channel with
electrons in the hole-depletion mode induces a substantial device instability. Yet,
F/10%V.em? after several iterations the temporal evolution of the surface potential becomes
steady allowing for the mapping of the surface potential evolution during the

P, (x,8) =9 (p(x,t) - g, (x)) = charge reversal. The response is modeled on basis of 2D FEM-simulations and
IG6.6) = WG [8.4(y. 1) 1.3510° | ) transmission-line equations. By transient KPFM the subthreshold hole mobility
X, 0 = WG, |, 0.4(y, 000y - dependent on the electric-field and carrier-density - becomes accessible.
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The result was fitted by the Extended
Gaussian Disorder Model [3].
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