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FIGURE 1: SnO phase segregation (M. Ebner et al., 2013)

* Phase segregation occurs in alloy anodes such as
Si, Sb and Sn, as well as in cathode materials
(FiG. 1).

e Diffusion-induced stresses (DIS) will lead to the
degradation of electrode particles in Li-ion batter-
ies.

e Cahn-Hilliard (CH) phase field model is coupled
with mechanical stresses in this research.

* [sogeometric finite element analysis is employed
due to a numerical requirement of C!-continuity.

2 Theoretical background

Local mass balance:
c=V-[Myc(1-¢)Vu]
Local force balance:
Divo +b=20
Constitutive relation:
u=0o.¥(c,Vc,e), o=0.¥(,Vc,e),
in which

W(c,Vc,e) = fB Y (c,Vc,e)dv,

Y(c, Ve, €e) = () +1(Ve)+ (€, ),

¢C(C) — UpC _I_Recmaxxé (1 o E)
+ROc,.. [(1—8)In(1—¢)+clné],
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Here,
C
e . = —— denotes normalized concentration.
Cmax

* ., Y, and Y, represent the homogeneous, inter-
face and elastic free energy, respectively.

e C is the fourth-order elasticity tensor.

e ¢ is the small strain tensor.
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rium state after a certain amount of homogeneous flux is given

at the end of the bar. The other 5 sides are kept flux-free. For [ IGURE 6: Results from a chemo-mechanical coupling model:

the mechanical part, normal displacements are fixed on the (a) local concentration, (b) local free energy, (c) normal

four sides as well as on the bottom; free-end and fixed-end St€SS€S; (d) displacement in z-direction along the longitu-

are discussed as two cases (Fic. 6). In Fic. 3 and Fic. 4, the dinal axis of the bar.

mechanical coupling is not considered.
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4 Conclusion & outlook
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FiGURE 3: Local concentration (a,c) and local free energy (b,d) exists.

at equilibrium state. In particular, (a) and (c) show a moving + Phase segregation can be suppressed by mechani-

interface due to different amount of incoming flux; (b) and
cal effect.

(d) show a dependence of the domain wall free energy and

thickness on the interface parameter . Outlooks:
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FiGURE 5: The suppression of phase segregation by elasticity.
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