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1 Motivation

FIGURE 1: SnO phase segregation (M. Ebner et al., 2013)

• Phase segregation occurs in alloy anodes such as
Si, Sb and Sn, as well as in cathode materials
(FIG. 1).

• Diffusion-induced stresses (DIS) will lead to the
degradation of electrode particles in Li-ion batter-
ies.

• Cahn-Hilliard (CH) phase field model is coupled
with mechanical stresses in this research.

• Isogeometric finite element analysis is employed
due to a numerical requirement of C1-continuity.

2 Theoretical background

Local mass balance:
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Local force balance:

Divσ+ b= 0

Constitutive relation:

µ= δcΨ(c,∇c,ε), σ = δεΨ(c,∇c,ε),

in which
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B
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Here,

• c̄ =
c

cmax
, denotes normalized concentration.

•ψc, ψs and ψe represent the homogeneous, inter-
face and elastic free energy, respectively.

•C is the fourth-order elasticity tensor.

• ε is the small strain tensor.

3 Simulation Results

FIGURE 2: Distribution of normalized concentration at equilib-

rium state after a certain amount of homogeneous flux is given

at the end of the bar. The other 5 sides are kept flux-free. For

the mechanical part, normal displacements are fixed on the

four sides as well as on the bottom; free-end and fixed-end

are discussed as two cases (FIG. 6). In FIG. 3 and FIG. 4, the

mechanical coupling is not considered.
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FIGURE 3: Local concentration (a,c) and local free energy (b,d)

at equilibrium state. In particular, (a) and (c) show a moving

interface due to different amount of incoming flux; (b) and

(d) show a dependence of the domain wall free energy and

thickness on the interface parameter κ.
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FIGURE 4: Determination of the interface thickness. If the in-

terface thickness is defined as s in (a), a linear relationship

s ∝
p
κ can be obtained (b). κ∗ = κ/κ0, and κ0 is a normal-

ization parameter.
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FIGURE 5: The suppression of phase segregation by elasticity.
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FIGURE 6: Results from a chemo-mechanical coupling model:

(a) local concentration, (b) local free energy, (c) normal

stresses, (d) displacement in z-direction along the longitu-

dinal axis of the bar.

4 Conclusion & outlook

Conclusions:

• Two phases with a diffusive interface form after
certain amount of flux is provided.

• Interface sits at different locations when different
amount of flux is applied.

• Interface thickness is proportional to square root
of the interface parameter κ.

• Interface free energy peaks at the middle of the in-
terface, where the largest concentration gradient
exists.

• Phase segregation can be suppressed by mechani-
cal effect.

Outlooks:

• Simulation of spherical or ellipsoidal particles.

• Extention into a large deformation model.

• Consideration of the plastic deformation.
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