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Rechargeable Lithium Ion Batteries (LIB) are nowadays the most important
energy source for mobile electronic devices. The established LIB technology
based on LiCoO, cathode active material has reached its physical capacity
limit and new materials need to be developed for the next generation of
LIBs. Much research is dedicated to the integrated structures of Li,MnO, and
Li(TM)O, (TM = Ni, Co, Mn) because of its potential to house reversible
capacities > 250 mAhg?! [1]. The nanostructure of these blends is very
complex and highly depends on the synthesis conditions [2]. For this study,
two integrated structures with the same nominal composition of
0.5Li,Mn0O;:0.5Li(Ni, 5Co; sMn,; ,5)O, were synthesized. Transmission
electron microscopy (TEM) was used to analyze the nanostructure of two
pristine powders and coin cells have been fabricated to measure the
electrochemical (EC-) performance. The discrepancies in the EC-

performance can be interpreted as a result of the nano
structural constitution.

The Li(TM)O, crystallizes in the R-3m spacegroup and the Li,MnO,
in the C2/m symmetry. The phases are integrated in a cubic close
packed oxygen lattice and differ in the cation ordering on the
octahedral sites. Rotational stacking faults of the Li,MnO, phase are

common in this system. ©Ni,Co,Mn @Mn OLi O
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Voltage profile of powder #1:

+ Characteristic first cycle profile with plateau at
4.5V

+ Reversible capacity > 250 mAhg?! for the first
30 cycles

+ Voltage and capacity fade accompanied with change
to strong spinel-like characteristic in voltage profile
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Voltage profile of powder #2:
Characteristic first cycle profile with plateau at
4.5V

* Reversible capacity < 250 mAhg!

» Voltage and capacity fade accompanied with change
to minor spinel-like characteristic in voltage profile
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Capacity rentention plot of powder #1 and #2:
* Capacity > 250 mAhg! for powder #1 decreases fast
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Synchrotron XRD-pattern of sample #1 and #2: both pattern
show a Warren-shaped reflexes of the C2/m ordering reflections
caused poor translational symmetry in c-direction. Sample #2
exhibits additional sharp reflections indicating parts with higher

crystallinity [3,4].
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Sample #2

image shows
the integrated structure.
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The two active materials were characterized by their EC-performance and by
their nanostructure. Sample #1 has good EC-characteristics and the two
phases are finely integrated on the nanometer scale. Sample #2 is composed
of phase integrated and monoclinic parts. The monoclinic structure is
believed to be EC-inactive explaining the low first cycle capacity [5].
Because of the phase segregation, the EC-active integrated structure has a

higher Li(TM)O, content making it less susceptible to spinel formation [6].
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