

In Situ Raman Diagnostics of **Intercalation Batteries**

<u>Toni Gross¹</u>, Christian Hess¹

¹Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany

Project B8

Motivation and experimental setup

In situ Raman experiments are performed in 180° backscattering geometry using a transmission spectrometer equipped with a CCD detector. The excitation laser (532 nm unless noted otherwise) is focused onto the sample through a confocal microscope coupled with a x-y-z-stage, allowing measurements with high lateral resolution (spot size is approximately 2,5 μ m).

Spatially-resolved Raman analysis

Raman mapping of a LiCoO₂ composite electrode. Individual Raman spectra show the heterogeniety of chemical composition across the surface ^[3] (below).

before cycling

The Li_{1-x}CoO₂ composite cathode (84% active material, 8% PVDF, 8% carbon black) was used with commercial electrolyte (LP30, 1M LiPF₆ in EC:DMC 1:1 (wt), Merck) and metallic Li as counter-electrode.

In situ Raman data for a LiCoO₂ composite electrode immersed into electrolyte before (above) and after cycling (below). Spectra were taken at 532 nm excitation. Signals correspond to integrated areas of the 595 cm⁻¹ LiCoO₂ band after background subtraction. The individual spectra were taken at the indicated positions. Spectra were offset for clarity.

Resonant enhancement

Resonant enhancement of $LiCoO_2$ A_{1g} mode when exciting the sample with 514.5 or 532 nm in contrast to non-resonant excitation with 632.8 nm (below).

Raman mapping of a LiCoO₂ composite electrode. Shown is the integrated Raman signal of the LiCoO₂ A_{1g} phonon band before cycling (top) and after five cycles (bottom).

Summary:

Publications last funding period

- T. Gross, L. Giebeler, C. Hess, Novel in situ cell for Raman diagnostics of lithium-ion batteries, Rev. Sci. Instrum. 84, (2013), 073109
- T. Gross, C. Hess, Raman diagnostics of $LiCoO_2$ electrodes for lithium-ion batteries, J. Power Sources **256**, (2014), 220 2)
- T. Gross, C. Hess, Spatially-resolved in situ Raman analysis of 3) $LiCoO_2$ electrodes., ECS Transactions (2014)

- Raman spectrocopy enables *in situ* studies on positive and negative electrodes with lateral resolution (~2,5 μ m).
- Wavelength-dependent studies elucidate the presence of a Resonance Raman enhancement for $LiCoO_2$ materials.
- Raman mapping demonstrates the chemical heterogeneity in composition across LiCoO₂ composite electrodes.
- Mappings of initial and cycled electrode suggest chemical redistribution induced by electrochemical cycling.