Monte Carlo simulation of polarization switching and electrocaloric effect in ferroelectrics with random fields

TECHNISCHE UNIVERSITÄT DARMSTADT

Yangbin Ma, Karsten Albe and Baixiang Xu Institute of Materials Science. Email: y.ma@mfm.tu-darmstadt.de

Motivation

Electrostatic energy:

- *Electrocaloric effect* (ECE) has high application potential for solid refrigeration.
- Some *relaxor ferroelectrics* (RFEs) can produce higher ECE at lower electric field.
- Origins of RFEs and ECE are still under debate, and are deserved to be studied and optimized.

Lattice based model

Lattice based model is utilized for calculation with periodic boundary condition. Lattice constant $a_0 = 4$ Å, and thus the volume of unit cell $V_0 = a_0^3$.

Total energy

 $H^* = H_D + H_{dip} + H_{gr} + H_e + U$

Landau multi-well potential:

$$H_D = V_0 \sum_i \left[-\frac{a}{2} (P_x^2(\mathbf{r}_i) + P_y^2(\mathbf{r}_i)) + \frac{b}{2} (P_x^4(\mathbf{r}_i) + P_y^4(\mathbf{r}_i)) \right]$$

$$H_e = -V_0 \sum_{i} \left[\mathbf{P}(\mathbf{r}_i) \cdot (\mathbf{E}^{ex} + \mathbf{E}^{rm}(\mathbf{r}_i)) \right]$$

where \mathbf{E}^{ex} is the external electric field, $\mathbf{E}^{rm}(\mathbf{r}_i)$ is the random field[1] at site *i*.

Thermal energy:

$$U = \frac{f}{2}Nk_{E}$$

where *f* is the number of degrees of freedom per unit cell, *N* is the number of sites.

Simulation algorithm

Canonical Monte Carlo: T = constant. $p(\mathbf{r}_i) = min\left[1, \exp\left(-\frac{\Delta H(\mathbf{r}_i)}{k_B T}\right)\right]$

where $\Delta H(\mathbf{r}_i)$ denotes the change in the potential energy of the system. The switching is approved if the switching probability $p(\mathbf{r}_i)$ for site *i* is not less than a randomly generated number *Rnd* within [0, 1].

4 x y y

where $a = 13.7128 \times 10^8 \text{J}\,\text{m}\,\text{C}^{-2}$, $b = 28.908 \times$ $10^9 \text{J}\,\text{m}^5\,\text{C}^{-4}$, \mathbf{r}_i is the coordinate of site *i*.

Dipole-dipole interaction energy:

$$H_{dip} = S_A V_0^2 \frac{1}{8\pi\epsilon_0\epsilon_r} \sum_{[i,j]} \left[\frac{\mathbf{P}(\mathbf{r}_i) \cdot \mathbf{P}(\mathbf{r}_j)}{|\mathbf{r}_{ij}|^3} - \frac{3[\mathbf{P}(\mathbf{r}_i) \cdot \mathbf{r}_{ij}][\mathbf{P}(\mathbf{r}_j) \cdot \mathbf{r}_{ij}]}{|\mathbf{r}_{ij}|^5} \right]$$

where $\epsilon_r = 12$ is the relative permittivity at high frequency and the cut-off radius is eight times the lattice constant.

Microcanonical Monte Carlo[2]: H = constant. $\sum Demon(\mathbf{r}_i, k) = \frac{f}{2}Nk_BT$

where $Demon(\mathbf{r}_i, k)$ is the thermal energy at site *i* for the *k*-th demon. If $\Delta H(\mathbf{r}_i)$ is not less than $Demon(\mathbf{r}_i, k)$, the switching is approved, and $Demon(\mathbf{r}_i, k) = Demon(\mathbf{r}_i, k) - \Delta H(\mathbf{r}_i).$

Conclusions

- Higher gradient energy leads to higher phase transition temperature. Static random fields result in a wide phase transition range.
- Domain miniaturization and decrease of remnant polarization are observed when random fields are present.
- The magnitude of random fields determines the decrease in the saturation polarization, while the number of random fields is responsible for the decrease of the remnant polarization.

FIGURE 1: Illustration for (a) dipole-dipole interaction and (b) electrostatic energy.

Gradient energy:

$$H_{gr} = S_J V_0 \sum_{i} \left[g_1 (P_{x,x}^2(\mathbf{r}_i) + P_{y,y}^2(\mathbf{r}_i)) + g_1' P_{x,x}(\mathbf{r}_i) P_{y,y}(\mathbf{r}_i) + g_2 (P_{x,y}(\mathbf{r}_i) + P_{y,x}(\mathbf{r}_i))^2 + g_2' (P_{x,y}(\mathbf{r}_i) - P_{y,x}(\mathbf{r}_i))^2 \right]$$

where $P_{i,j} = \partial P_i / \partial x_j$ and $g_1 = g'_1 = g_2 = g'_2 = 2 \times 10^{-11} \text{ Jm}^3 \text{ C}^{-2}$.

 $P = P_0 \hat{P}, P_0 = 0.46 \ Cm^{-2}.$

figurations are illustrated for (a) FEs and (b) RFEs with $|\hat{E}^{rm}| = 20. \ E = E_0 \hat{E}, \ E_0 = 4.6875 \times 10^7 \ Vm^{-1}.$

- Gradient energy and dipole interaction promote ECE effect. Higher gradient energy shifts the ECE peak to higher temperature.
- When the random field is stronger, the ECE effect becomes weaker, but the ECE peak is shifted to a lower temperature.

Acknowledgements

The funding of DFG Priority Programme 1599 B3 is greatly acknowledged.

References

- [1] V. Westphal, W. Kleemann, and M. D. Glinchuk. Diffuse phase transitions and random-fieldinduced domain states of the "relaxor" ferroelectric pbmg_{1/3}nb_{2/3}o₃. *Phys. Rev. Lett.*, 68:847–850, Feb 1992.
- [2] I. Ponomareva and S. Lisenkov. Bridging the macroscopic and atomistic descriptions of the electrocaloric effect. Phys. Rev. Lett., 108:167604, 2012.