

Conductivity and Hall effect relaxation of undoped and doped In_2O_3 thin films

M. V. Frischbier, A. Klein

TECHNISCHE UNIVERSITÄT DARMSTADT

DFG

Technische Universität Darmstadt, Department of Materials and Earth Sciences, Jovanka-Bontschits-Strasse 2, D-64287 Darmstadt

Project D3

Motivation

- Transparent Conductive Oxides (TCO) are used as electrode materials in solar cells, OLEDs and as sensor material
- Oxygen exchange at surface/interface is important for electrical **properties** – conductivity σ , carrier concentration *n* and mobility μ are crucial for device functionality

Results: Relaxation Measurements $p(O_2)$ dependent relaxation measurement of In_2O_3 6x10 600°C 600°C

 $\sigma = e n \mu$

Discrimination of effects on *n* and effects on μ is needed! Hall effect measurements

Material

- Sn doped In₂O₃ (ITO) is the most common TCO: high conductivity (up to 10^4 S/cm)
- Doping of In₂O₃ by Sn is accomplished by substitutional Sn atoms on In lattice sites Sn_{In} : one electron per Sn atom
- Sn[•] donors can be compensated by O"_i forming neutral defect complexes $(2Sn_{In}O_i)^{\star}$
- HERE: rf magnetron sputtered thin films are used (thickness ~ 400nm)

- Carrier concentration changes reversibly with oxygen partial pressure
- Carrier mobility also depends on oxygen partial pressure due to changes in carrier concentration and changes in GB barrier
- Fast changes followed by long-term drift
- Slope of Brouwer plot does not correspond to expected $pO_2^{-1/6}$ dependence

T dependent relaxation measurement of ITO

Measurement Setup:

- Simultaneous Conductivity and Hall measurements of thin films depending on
- **Temperature** (up to 600 °C)
- Gas atmosphere, variable oxygen/argon ratio, oxygen content controlled by oxygen pump, monitored with oxygen sensor
- Requirements for furnace and sample holder:
- Non magnetic materials
- All furnace materials stable in oxidizing and reducing conditions
- Slim design for space reasons between poles of electromagnet

Publications last funding period

- Körber, C., et al. (2011). "Self-Limited Oxygen Exchange Kinetics at SnO₂ Surfaces." Physical Chemistry Chemical Physics 13: <u>3223-3226.</u>
- Deuermeier, J., et al. (2011). "Reactive magnetron sputtering of Cu_2O : Dependence on oxygen pressure and interface $2^{}$ formation with indium tin oxide." Journal of Applied Physics 109(11).

Hohmann, M. V., et al. (2011). "Orientation dependent ionization potential of In_2O_3 : a natural source for inhomogeneous 3) barrier formation at electrode interfaces in organic electronics." Journal of Physics-Condensed Matter 23(33).

4

5)

Zakutayev, A., et al. (2011). "Interdiffusion at the BaCuSeF/ZnTe interface." Thin Solid Films 519(21): 7369-7373.

Klein, A. (2012). "Energy band alignment at interfaces of semiconducting oxides: A review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality

- Changes in conductivity caused by changes in carrier concentration *and* mobility
- Non-monotonic change of carrier mobility
- Changes in mobility related to dopant segregation
- Significant changes for T > 200 °C

Grain boundary scattering

 Φ : grain boundary barrier μ_0 : bulk mobility "Setos Modell"

- Effective carrier concentration and mobility affected by GB barriers (trap density) and grain size
- GB barrier influenced by segregation

Gassenbauer, Y. (2006) Physical Review B 73: 245312.

Sn segregation was measured with XPS on ITO surfaces:

function of temperature and Fermi level position (= carrier concentration)

5 Key Publications (2003-2014)

- levels, and the common anion rule." Thin Solid Films 520(10): 3721-3728.
- Proffit, D. E., et al. (2012). "Surface studies of crystalline and amorphous Zn–In–Sn–O transparent conducting oxides." Thin 6Solid Films 520(17): 5633-5639.
 - Bayer, T. J. M., et al. (2012). "Atomic Layer Deposition of Al_2O_3 onto Sn-Doped In_2O_3 : Absence of Self-Limited Adsorption during Initial Growth by Oxygen Diffusion from the Substrate and Band Offset Modification by Fermi Level Pinning in Al2O3." Chemistry of Materials 24(23): 4503-4510.
- Hopper, E. M., et al. (2013). "Surface electronic properties of polycrystalline bulk and thin film In2O3(ZnO)_k compounds." 8 Applied Surface Science 264(0): 811-815.
- Rein, M. H., et al. (2013). "An in situ x-ray photoelectron spectroscopy study of the initial stages of rf magnetron sputter 9) deposition of indium tin oxide on p-type Si substrate." Applied Physics Letters 102(2).
- Klein, A. (2013). "Transparent Conducting Oxides: Electronic Structure–Property Relationship from Photoelectron Spectroscopy with in situ Sample Preparation." Journal of the American Ceramic Society **96(2)**: **331-345**. 10)
- Pfeifer, V., et al. (2013). "Energy Band Alignment between Anatase and Rutile TiO₂." <u>The Journal of Physical Chemistry</u> Letters 4(23): 4182-4187.

Rachut, K., et al. (2014). "Growth and surface properties of epitaxial SnO₂." Physica Status Solidi (a): n/a-n/a.

Hohmann, M. V., et al. (2014). "In situ Hall effect and conductivity measurements of ITO thin films." Solid State Ionics 13) <u>262(0): 636-639.</u>

- Gassenbauer, Y., et al. (2006). "Surface states, surface potentials and segregation at surfaces of tin-doped In₂O₃." <u>Physical Review B 73: 245312.</u>
- Erhart, P., et al. (2006). "First-principles study of intrinsic point defects in ZnO: Role of 2) band structure, volume relaxation, and finite-size effects." <u>Physical Review B 73(20).</u>
- Walsh, A., et al. (2008). "Nature of the band gap of In_2O_3 revealed by first-principles calculations and X-ray spectroscopy." <u>Physical Review Letters **100(16)**</u>. 3)
- Klein, A., et al. (2009). "Surface Potentials of Magnetron Sputtered Transparent Conducting Oxides." <u>Thin Solid Films **518**: **1197–1203**</u>. 4)

Klein, A. (2013). "Transparent Conducting Oxides: Electronic Structure–Property Relationship from Photoelectron Spectroscopy with in situ Sample Preparation." Journal 5) of the American Ceramic Society 96(2): 331-345.