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» Transparent Conductive Oxides (TCO) are used as electrode materials in
solar cells, OLEDs and as sensor material

« Oxygen exchange at surface/interface is important for electrical
properties — conductivity ¢, carrier concentration 71 and mobility u are
crucial for device functionality

c=enu

Discrimination of effects on 7 and effects on u is needed!
@ Hall effect measurements

Material

e Sn

doped In,O,; (ITO) is the most common TCO: high conductivity

(up to 104 S/cm)

* Doping of In,0O, by Sn is accomplished by substitutional Sn atoms on In lattice
sites Sn,,, : one electron per Sn atom

* Sn® donors can be compensated by O", forming neutral defect complexes
(2Sn,,0,))*

 HERE: rf magnetron sputtered thin films are used (thickness ~ 400nm)
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Measurement Setup:

Simultaneous Conductivity and Hall measurements of thin films depending on

 Temperature (up to 600 °C)

» Gas atmosphere, variable oxygen/argon ratio, oxygen content controlled by
oxygen pump, monitored with oxygen sensor

Requirements for furnace and sample holder:

« Non magnetic materials

 All furnace materials stable in oxidizing and reducing conditions

 Slim design for space reasons between poles of electromagnet
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Carrier Concentration n [1/cm?]

@ : grain boundary barrier
K, : bulk mobility

p(0,) dependent relaxation measurement of In,O,
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Carrier concentration changes reversibly with oxygen partial pressure
Carrier mobility also depends on oxygen partial pressure due to changes in
carrier concentration and changes in GB barrier

Fast changes followed by long-term drift

Slope of Brouwer plot does not correspond to expected pO, /¢ dependence

T dependent relaxation measurement of ITO
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Changes in conductivity caused by changes in carrier concentration and mobility
Non-monotonic change of carrier mobility
Changes in mobility related to dopant segregation
Significant changes for T > 200 °C

Grain boundary scattering

« Effective carrier concentration and mobility
affected by GB barriers (trap density) and grain
size

GB barrier influenced by segregation

 Sn segregation was measured with XPS on ITO
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