Project B9

Lead-free (100-x)(Bi_{1/2}Na_{1/2})TiO₃ – x BaTiO₃ relaxor ferroelectrics characterized by ²³Na Nuclear Magnetic Resonance (NMR)

P. B. Groszewicz,¹ H. Breitzke,¹ E. Sapper,² R. Dittmer,² W. Jo,³ G. Buntkowsky,¹ and J. Rödel²

¹ Institute of Physical Chemistry, Technische Universität Darmstadt, Germany

² Department of Materials Science, Technische Universität Darmstadt, Germany

³ School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Republic of Korea

BNT-xBT Relaxor-to-Ferroelectric Crossover

1st Question:

Is there any relation between local structure disorder and the relaxor behavior in BNT-xBT materials?

²³Na Nuclear Magnetic Resonance (NMR) - The Quadrupolar Interaction

3QMAS – Distribution of Quadrupolar Interaction

TECHNISCHE UNIVERSITÄT DARMSTADT

TECHNISCHE

UNIVERSITÄT DARMSTADT

Local disorder dependence to xBT content contrasted to the permittivity

Local disorder dependence to xBT content contrasted to the permittivity

OBT 6BT **3BT** sotropic Chemical Shift **12BT** sotropic Chemical Shift Isotropic Chemical Shift Chemical Shift Iso QS -10 -4 -6 MAS DImension -10 -8 -4 -6 MAS Dimension -8 -4 -6 MAS Dimension -8 -10 MAS Dimension **0BT 3BT** 3 Fwhm along QS (Hz) 300 (x1000) 5 4 (0001x) ,3 2 ω 250 6BT **Effect of 15BT** 200 E' (x1000) 4 (0001x) ,3 barium 150 2 8 12 6 10 0 4 0 0 100 200 300 100 200 300 **Ba Content (%)** Temperature (°C) Temperature (°C)

2nd Question:

What other effects can account for relaxor behavior in BNT-6BT?

BNT-6BT & Nano scale structure of Relaxor Ferroelectrics

Local Polarization

Adapted from: Bokov, A. A; Ye, Z. G., J Mater Sci 41, 31 (2006)

²³Na (I=3/2) NMR – 1st Order Quadrupole Interaction

²³Na (I=3/2) NMR – 1st Order Quadrupole Interaction

²³Na MAS NMR of unpoled BNT-6BT

TECHNISCHE UNIVERSITÄT DARMSTADT

Conclusions

 ²³Na NMR sensitive the local structure and the degree of disorder in BNT-xBT materials;

Acknowledgements

Prof. Buntkowsky's Group Dr. Hergen Breitzke

Prof. Rödel's Group

