Reversible multi- to single-domain transition in Ba(Zr_{0.2}Ti_{0.8})O₃-x(Ba_{0.7}Ca_{0.3})TiO₃ ferroelectrics under poling conditions

TECHNISCHE UNIVERSITÄT DARMSTADT

M. Zakhozheva, L. A. Schmitt, M. Acosta, H. Guo, W. Jo, H.-J. Kleebe, J. Rödel and X.Tan

Department of Materials and Geo-Sciences, Technische Universität Darmstadt, 64287 Darmstadt, Germany

International Symposium SFB 595, 15.-17. September 2014, Sellin, Rügen Island

Outline

$\underline{\mathsf{Ba}(\mathsf{Zr}_{0.2}\mathsf{Ti}_{\underline{0.8}})\mathsf{O}_3}\text{-}x(\underline{\mathsf{Ba}_{0.7}}\mathsf{Ca}_{\underline{0.3}})\mathsf{TiO}_3}$

- Basics: Structure & phase diagram
- Materials and methods
- TEM Results on BZT-xBCT:

 \rightarrow In-situ electric field investigations

 \rightarrow *In-situ* electric field + cold stage investigations

Summary

Perovskite structure

Perovskite has a cation on the A-site and a different ^a cation on the B-site, which is octahedrally coordinated by anions.

a = 4,007 Å

α, β, $\gamma = 89,95^{\circ}$

R3m

Phase diagrams

Liu et al. PRL 103 (2009) 200 (a) 150 Cubic triple point 100 Temperature (°C) 50 Tetragonal 0 Rhombohedral -50 -100 -150 -200 80 90 10 20 30 60 70 100 0 40 50 BZT-BCT

Keeble et al. APL (2013)

The phase diagram is characterized by a MPB separating a ferroelectric R and T phases. The most important feature of the BZT-BCT system is the existence of a C-R-T triple point. The observed orthorhombic Amm2 phase persists all the way to the phase convergence region.

Intrinsic and extrinsic piezoelectric effect

Hoffmann et al. Acta mater. 49 (7), (2001)

The applied electric field causes a shift of the ions in the unit cell, which results in a change of the d-spacing.

Extrinsic effect - texture

The applied electric field leads to domain wall motion which results in an increase or decrease of distinct crystal orientations.

- Ba(Zr_{0.2}Ti_{0.8})O₃-x(Ba_{0.7}Ca_{0.3})TiO₃ (abbreviated as BZT-xBCT), x = 0.30 0.32 0.45 0.48 0.52 and 0.60
- Solid state reaction method (M. Acosta): Calcination → 2 h at 1300 °C Cold isostatic pressing at 300 MPa Sintering → 2 h at 1500 °C
- In-situ electric field investigations: Philips CM20, CM30
- In-situ electric field + cold stage investigations: Tecnai G² F20XT

In-situ studies on BZT-xBCT

→In-situ E-field studies
→In-situ E-field + cold-stage studies

x = 0.48, 0.52

x = 0.30, 0.32, 0.45, 0.52, 0.60

Au-electrodes evaporated on the flat surface

Sample glued into holder with insulating varnish

Electrical field perpendicular to electron beam

Distance between electrodes d = 100µm - 150µm

Highest Voltage U = 500V

In-situ E-field studies BZT-0.30BCT

In-situ E-field studies BZT-0.30BCT

E = -2 kV/cm

E = -20 kV/cm

In-situ E-field studies BZT-0.45BCT

 $\mathbf{E} = \mathbf{0} \mathbf{kV/cm}$

In-situ E-field studies **BZT-0.52BCT**

 $\mathbf{E} = \mathbf{0} \mathbf{kV/cm}$

E = 1.25 kV/cm

E = 1.7 kV/cm

E = 5.8 kV/cm

E = 7.5 kV/cm

In-situ E-field studies **BZT-0.52BCT**

 $\mathbf{E} = -5.8 \text{ kV/cm}$

E = -6.5 kV/cm

E = -6.5 kV/cm after 10 sec

In-situ E-field studies **BZT-0.60BCT**

E = 0 kV/cm

E = -7.66 kV/cm

E = -8.66 kV/cm

M.Zakhozheva et al. APL, accepted 2014

E-field + cold stage

E = 2.1 kV/cm, cool down:

BZT-xBCT

In situ E-field + cold stage studies BZT-0.48BCT

TECHNISCHE UNIVERSITÄT DARMSTADT

T = 21 °C, poling:

15. Oktober 2014 |In-situ TEM Studies of Pb-free ferroelectrics | 18

Summary

In the present study, a field-induced transformation from a multi- to a single-domain state was monitored in $Ba(Zr_{0.2}Ti_{0.8})O_3-x(Ba_{0.7}Ca_{0.3})TiO_3$ piezoceramics.

- •Transformation from the multi- to the single-domain state with increasing the poling field.
- •Appearance of the nanodomain state at the moderate poling fields.
- Single-domain state is not stable against higher fields.
- Transformation from the single-domain state to the multi-domain state with decreasing the temperature at the constant poling field
- SAED patterns do not show any reflection splitting or any detectable changes during the poling process.

Conclusion

The displacement of the domain walls and changes in the domain configuration during poling indicated a high extrinsic contribution to the piezoelectric properties in $Ba(Zr_{0.2}Ti_{0.8})O_3-x(Ba_{0.7}Ca_{0.3})TiO_3$ piezoceramics.

Thank you for your attention