In situ Raman diagnostics of intercalation batteries

TECHNISCHE UNIVERSITÄT DARMSTADT

Christian Hess

Eduard-Zintl-Institut für Anorganische und Physikalische Chemie Technical University Darmstadt Germany

Current research activities

15.09.2014 | 2

Outline

- Research strategy
- Intro to Raman spectroscopy
- Raman diagnostics of LiCoO₂ materials
- Spatially-resolved Raman analysis
- Summary

Outline

- Research strategy
- Intro to Raman spectroscopy
- Raman diagnostics of LiCoO₂ materials
- Spatially-resolved Raman analysis
- Summary

Research Strategy

Vision

Knowledge-based design of functional materials

 \rightarrow catalysts, batteries, gas sensors

Strategy

Establish structure-activity relations

Structural characterization under working conditions

 \rightarrow In situ/operando spectroscopy

Li ion batteries

electrolyte (separator)

$$Li_xC_n \stackrel{D}{\longleftrightarrow} C_n + xLi^+ + xe^ Li_{1-x}MO_2 + xe^- + xLi^+ \stackrel{D}{\longleftrightarrow} LiMO_2$$

Outline

- Research strategy
- Intro to Raman spectroscopy
- Raman diagnostics of LiCoO₂ materials
- Spatially-resolved Raman analysis
- Summary

Why Raman spectroscopy?

- Infos on vibrational modes (phonons)
 - \rightarrow local structure information
- Usually small interference of electrolyte
- No specific conditioning of sample required
- Noninvasive and nondestructive analysis
- In situ spectra of batteries at work
- Spatially (1 µm³) and time resolved information

Vibrational Raman scattering

v(Raman shift) = v(VIS) – v(Stokes)

Vibrational Raman scattering

Raman setup - single stage

Potential of Raman diagnostics

\rightarrow Origin of fatigue

Outline

- Research strategy
- Intro to Raman spectroscopy
- Raman characterization of LiCoO₂ materials
- Spatially-resolved Raman analysis
- Summary

Active cathode materials LiMO₂

TECHNISCHE

UNIVERSITÄT DARMSTADT

Active cathode materials LiMO₂

M = Co, Ni or mixtures

15.09.2014 | 15

Raman spectra of LiCoO₂ cathode mix

T. Gross, C. Hess, J. Power Sources 256, 220 (2014)

In situ Raman cell for battery research

T. Gross, L. Giebeler, C. Hess, Rev. Sci. Instr. 84, 73109 (2013)

In situ Raman: Li_{1-x}CoO₂ deintercalation

In situ vs ex situ Raman spectroscopy

T. Gross, L. Giebeler, C. Hess, Rev. Sci. Instr. 84, 73109 (2013)

Resonance Raman effect – LiCoO₂

Excitation wavelength dependence

 \rightarrow Intensity changes / overtone bands reveal resonance effect

T. Gross, C. Hess, J. Power Sources 256, 220 (2014)

Resonance Raman effect – in situ

Raman scattering

Raman scattering

15.09.2014 | 23

Advanced Raman setup

D. Nitsche, C. Hess, J. Raman Spectrosc. 44, 1733 (2013)

Outline

- Research strategy
- Intro to Raman spectroscopy
- Raman characterization of LiCoO₂ materials
- Spatially-resolved Raman analysis
- Summary

Raman mapping - LiCoO₂ cathode mix

 \rightarrow Chemical heterogeneity across surface of cathode material

Raman mapping - LiCoO₂ cathode mix

T. Gross, C. Hess, J. Power Sources 256, 220 (2014)

In situ Raman mapping

*LiCoO*₂ *mapping*

electrolyt present no electrochemistry

\rightarrow Chemical heterogeneity across surface of cathode material

T. Gross, C. Hess, ECS Transactions (2014)

x 10⁴ 0 5 *LiCoO*₂ *mapping* 4.5 5 4 Celative Intensity after 4 cycles 10 y-axis (microns) 15 20 1.5 25 1 532 nm, Rate: C/12, 30 0.5 $1M \text{ LiPF}_6 (EC/DMC = 1:1)$ 15 20 25 30 0 5 10 x-axis (microns)

In situ Raman mapping

TECHNISCHE UNIVERSITÄT DARMSTADT

 \rightarrow Significant changes in composition during battery operation

Summary and Outlook

- Raman spectrocopy: New insights during battery operation
- Resonance Raman: Sensitivity, probing electronic structure
- Raman Microscopy: Spatially-resolved chemical analysis

Summary and Outlook

- Raman spectrocopy: New insights during battery operation
- Resonance Raman: Sensitivity, probing electronic structure
- Raman Microscopy: Spatially-resolved chemical analysis

Summary and Outlook

- Raman spectrocopy: New insights during battery operation
- Resonance Raman: Sensitivity, probing electronic structure
- Raman Microscopy: Spatially-resolved chemical analysis

15.09.2014 | 33

Acknowledgement

Toni Groß

Marcel Heber Julia Eigenseer Karl Kopp

Project B4: *LiCoO₂ samples*

TECHNISCHE UNIVERSITÄT DARMSTADT

