Structure and Properties of Amorphous LiPON Electrolyte by First-Principles Simulations

TECHNISCHE UNIVERSITÄT DARMSTADT

Sabrina Sicolo, Karsten Albe

International Symposium on Electrical Fatigue in Functional Materials 15-18.9.2014 • Sellin • Rügen • Germany

Motivation & goals

J. Song, S. Jacke, D. Becker, R. Hausbrand, W. Jaegermann, *Electrochem. Sol. St. Lett.* 14, AII (2011) C.-N. Li, J.-M. Yang, V. Krasnov, J. Arias, K.-W. Nieh, *Appl. Phys. Lett.* 90, 263102 (2007)

Motivation & goals

- modelling of electrolyte and electrolyte/electrode interfaces/interphases is lacking
 - realistic solid electrolyte glassy structure
 - defectivity
 - interfaces with electrodes

understanding battery performance and failure modes

J. Song, S. Jacke, D. Becker, R. Hausbrand, W. Jaegermann, *Electrochem. Sol. St. Lett.* 14, A11 (2011) C.-N. Li, J.-M. Yang, V. Krasnov, J. Arias, K.-W. Nieh, *Appl. Phys. Lett.* 90, 263102 (2007)

What's LiPON

- → RF sputtering of Li₃PO₄ in N₂→Li_xPO_yN_z
 - bridging $O(O_b)$
 - non-bridging O (O_{nb})
 - triply coordinated N (N_t)
 - doubly coordinated N (N_d)

What's LiPON

Li₂O

Li₃PO₄

 $Li_4P_2O_7$

LiPO₃

- ▶ RF sputtering of Li₃PO₄ in $N_2 \rightarrow Li_x PO_y N_z$

 - doubly coordinated N (N_d)

approximant composition(s) needed:

 $Li_{1,25}PO_2N_{0,75}$ ($Li_5P_4O_8N_3$), Li_2PO_2N , ...

➡ effect of the composition on the properties of the material (not today)

J. Song, S. Jacke, D. Becker, R. Hausbrand, W. Jaegermann, Electrochem. Sol. St. Lett. 14, AII (2011)

P₂O₅

A. Schwöbel, private communication

Bulk glasses PVD deposition CVD deposition Own PVD depositions

P₃N₅

Coordinates

- crystal glass
- glasses and crystals share the same connectivity within and between local atomic polyhedra (Zachariasen's random network theory)

- ▶ idea:
 - (let a code) scan the potential energy landscape and identify the most stable structure
 - evolutionary algorithm

 glasses and crystals share the same connectivity within and between local atomic polyhedra (Zachariasen's random network theory)

- ▶ idea:
 - (let a code) scan the potential energy landscape and identify the most stable structure
 - evolutionary algorithm
 - introduce disorder (bond lengths/angles) while keeping connectivity in place
 - simulated annealing

- ▶ idea:
 - (let a code) scan the potential energy landscape and identify the most stable structure
 - evolutionary algorithm
 - introduce disorder (bond lengths/angles) while keeping connectivity in place
 - simulated annealing

 glasses and crystals share the same connectivity within and between local atomic polyhedra (Zachariasen's random network theory)

density functional theory

USPEX Universal Structure Predictor: Evolutionary Xtallography

$Li_5P_4O_8N_3$ – Structure

Li

Ρ

0

Ν

evolutionary algorithm

 $\frac{N_t}{N_d} = \frac{l}{2} = 0.50$ $\frac{O_b}{O_{nb}}=\frac{I}{7}=0.14$

$Li_5P_4O_8N_3$ – Structure

Li
P
O
N

*beware of periodic boundary conditions

Ь

*beware of periodic boundary conditions

*beware of periodic boundary conditions

- defectivity (i.e. departure from order) in a disordered material?
- vacancies and excess interstitials
 - still have to cope with virtually ∞ number of inequivalent sites

Li

Ρ

Ο

Ν

- defectivity (i.e. departure from order) in a disordered material?
- vacancies and excess interstitials
 - still have to cope with virtually ∞ number of inequivalent sites

- defectivity (i.e. departure from order) in a disordered material?
- vacancies and excess interstitials
 - still have to cope with virtually ∞ number of inequivalent sites

- defectivity (i.e. departure from order) in a disordered material?
- vacancies and excess interstitials

- defectivity (i.e. departure from order) in a disordered material?
- vacancies and excess interstitials

- defectivity (i.e. departure from order) in a disordered material?
- <u>vacancies</u> and excess <u>interstitials</u>
 - still have to cope with virtually ∞ number of inequivalent sites
 - preferred locations based on Li coordination

Li

Interface with LiCoO₂ (0001)

- minor structural relaxation

Li

Ρ

Ο

Ν

Co

- negligible adhesion energy
- DOS dominated by LiCoO₂

consistent with experiments

Interface with LiCoO₂ (0001)

Li

- at the interface:
 - minor structural relaxation
 - negligible adhesion energy
 - DOS dominated by LiCoO₂

consistent with experiments

- outlook:
 - LiPON/Li1-xCoO2 interface
 - LiPON/Li interface
 - Li⁺ diffusion barriers at interfaces

S. Jacke, J. Song, G. Cherkashinin, L. Dimesso, W. Jaegermann, Ionics 16, 769 (2010)

Acknowledgements

AG Prof. Albe André Schwöbel & René Hausbrand

you

The scientist is not a person who gives the right answers, he's one who asks the right questions.

- Claude Lévi-Strauss, Le Cru et le cuit, 1964