Transparent Conducting Oxide Electrodes

Grain boundary scattering in undoped and doped In₂O₃

M. Frischbier, H. Wardenga, A. Wachau, Y. Gassenbauer, C. Körber, M. Weidner, A. Klein

Department of Materials Science, Technische Universität Darmstadt

Motivation: The TCO electrode for organics

17.09.2014 | International Symposium on Electrical Fatigue in Functional Materials | Mareike Frischbier | SFB 595 D3 | 2

$p(O_2)$ dependent Hall-relaxation measurement of undoped In_2O_3

Carrier mobility

Setup

- *Carrier concentration n* changes reversibly with oxygen partial pressure
 - Slope of Brouwer plot does not correspond to expected p(O₂)^{-1/6} dependence
- Carrier mobility μ also depends on oxygen partial pressure:
 - due to changes in carrier concentration and changes in grain boundary barrier ???

Influence of doping elements on In₂O₃

Element	Short	Concentr.	Purpose
Sn	ITO	0.5, 2, 10 wt% SnO ₂	Most used, Segregation effects?
Zr	ZIO	1, 2 wt% ZrO ₂	High mobility
н	In ₂ O ₃ :H		High mobility, low processing T

Scattering mechanisms in In_2O_3 :

Phonon Scattering

- Single crystal (O. Bierwagen)
- Ionized Impurity Scattering
- Grainboundary Scattering

For *n* < 10²⁰ 1/cm³ *µ* is decreasing: ≻ effect of grainboundary scattering

Different dopings behave differently ➤ Segregation at grain boundaries?

Cooperation with O. Bierwagen, Paul-Drude-Institut, Berlin

17.09.2014 | International Symposium on Electrical Fatigue in Functional Materials | Mareike Frischbier | SFB 595 D3 | 5

GB Scattering – Simulation: model

TECHNISCHE UNIVERSITÄT DARMSTADT

Literature

➤ "Setos modell" was used:

Not valid for degenerate semiconductors

- Novel model needed
- Solving Poissons equation numerically

$$\rho(x) = -\epsilon_0 \epsilon_s \frac{d^2 \phi(x)}{dx^2} = \epsilon_0 \epsilon_s \frac{d\mathscr{E}(x)}{dx}$$

> MATLAB simulation > Parameters E_{CNL} , N_{GB} , L

TECHNISCHE

UNIVERSITÄT DARMSTADT

GB Scattering – Simulation: results

17.09.2014 | International Symposium on Electrical Fatigue in Functional Materials | Mareike Frischbier | SFB 595 D3 | 7

THE experiment

Sample:

Undoped In₂O₃ thin film deposited at oxidizing conditions

Relaxation measurement:

- 1. T-dependent
- 2. p(O₂)-dependent at 600°C

Cooling to RT after short time annealing and measurement of $\rm E_{\rm B}$

THE experiment - result

Sample: Undoped In_2O_3 thin film deposited at oxidizing conditions

Relaxation measurement:

- 1. T-dependent
- 2. p(O₂)-dependent at 600°C

Cooling to RT after short time annealing and measurement of $\rm E_{\rm B}$

Total measurement time: 62 days

Comparison of measurement and simulation

Summary

- Novel setup for T and pO₂ dependent Hall-effect measurement was constructed
- In₂O₃ was doped with Sn, Zr and H: carrier concentration and mobility were analyzed
- Grain boundary barriers E_B were measured: doping element affects E_B
- Grain boundary scattering model was developed and and grain barrier hight simulated
 - One In_2O_3 sample was measured about large carrier concentration region: E_{CNL} and N_{GB} can be simulated (first time!)

Thank you very much for your attention!