

Defect dipoles and spontaneous polarization in acceptor doped ferroelectrics: Switching and interaction

Yinan Zuo and Baixiang Xu

FG Mechanik funktionaler Materialien

FB Material- und Geowissenschaften

TU Darmstadt

International Symposium SFB 595, 17. September 2014, Sellin, Rügen Island

MECHANICS of FUNCTIONAL MATERIALS

Outline

TECHNISCHE UNIVERSITÄT DARMSTADT

- Overview of Porject C6
- Recent results: influence of defect dipole
 - Phase field model
 - Simulation results
- Summary

Overview of the project C6

In phase field modeling of ferroelectrics, we consider oxygen vacancies

- along with substitutions as static defect dipoles (ICCM 2012).
- or as switchable defect dipoles (current work).
- as stationary donors including other point defects (JAP, 115 (8); JAP, 116 (4))
- as diffsusing donors (current work).

Overview of the project C6

TECHNISCHE UNIVERSITÄT DARMSTADT

Zuo, Stein and Xu, ICCM Proceeding, 2012.

Overview of the project C6

TECHNISCHE UNIVERSITÄT DARMSTADT

Zuo, Genenko, Klein, Stein and Xu, J. Appl. Phys., 2014.

Zuo, Genenko and Xu, J. Appl. Phys., 2014.

Local defect polarization

TECHNISCHE UNIVERSITÄT DARMSTADT

Concentration of each species C_{α} , $\alpha = 1, 4$

Phase field model

Total Gibbs energy

$$H = H^{ent}(S_{ij}, E_i^t, P_i^t) + H^{sep}(P_i^s) + H^{grad}(P_{i,j}^s).$$

$$H^{ent} = \frac{1}{2}(S_{ij} - S_{ij}^{0})C_{ijkl}(S_{kl} - S_{kl}^{0}) - (S_{ij} - S_{ij}^{0})b_{kij}E_{k}^{t} - \frac{1}{2}E_{i}^{t}\varepsilon_{ij}E_{j}^{t} - P_{i}^{t}E_{i}^{t}$$

$$\begin{aligned} H^{sep} &= \frac{\kappa_s G}{\epsilon} [a_1 + a_2 (P_1^{s2} + P_2^{s2}) + a_3 (P_1^{s4} + P_2^{s4}) + a_4 P_1^{s2} P_2^{s2} + a_5 (P_1^{s6} + P_2^{s6})] \\ H^{grad} &= \kappa_i \frac{G\epsilon}{P_0^2} (P_{1,1}^{s2} + P_{1,2}^{s2} + P_{2,1}^{s2} + P_{2,2}^{s2}) \end{aligned}$$

Phase field model

Constitutive laws

$$D_{i} = -\frac{\partial H}{\partial E_{i}} = b_{ijk}(S_{jk} - S_{jk}^{0}) + A_{ij}E_{j}^{t} + P_{i}^{s} + P_{i}^{d}$$
$$\sigma_{ij} = \frac{\partial H}{\partial S_{ij}} = C_{ijkl}(S_{kl} - S_{kl}^{0}) - b_{kij}E_{k}^{t}$$
$$E_{i}^{t} = E_{i}^{e} + E_{i}^{d}, E_{i}^{d} = \frac{C_{0}P_{i}^{d}}{\pi\kappa_{0}}$$

(Eichel et al., Phys. Rev. Lett., 2008) Evolution of spontaneous polarization

$$\frac{\partial P_i^s}{\partial t} = -M \frac{\delta H}{\delta P_i^s}$$

Local defect polarization

Temporal evolution of concentration of oxygen vacancies

(Erhart, Träskelin and Albe, Phys. Rev. B. 2013)

Temporal evolution of concentration of oxygen vacancies

TECHNISCHE UNIVERSITÄT DARMSTADT

$$K_{ij} = \nu exp(-\frac{\Delta E_{i-j}}{k_B T})$$

At room temperature, the switching takes several days At 450K the switching completes within minutes

Evolution of oxygen vacancies and spontaneous polarization

TECHNISCHE UNIVERSITÄT DARMSTADT

Evolution of oxygen vacancies and spontaneous polarization

TECHNISCHE UNIVERSITÄT DARMSTADT

|14

Summary

TECHNISCHE UNIVERSITÄT DARMSTADT

Implementation of the switching of defect dipoles

- Defect dipole can be switched in minutes at high temperature
- Larger electric field necessary for switching

To be considered

Mechanism of aging due to defect dipoles

The financial support from SFB595 is gratefully acknowledged!

Thank you!