

Influence of Lead Oxide Stoichiometry Microstructure and Characteristics of PZT Ceramics and Multilayer Actuators

Wolfgang Rheinheimer¹, Moritz Oldenkotte², Hans Kungl³, Michael J. Hoffmann¹

¹ Institute of Applied Materials – Ceramics in Mechanical Engineering, Karlsruhe Institute of Technology

² sia Abrasives Industries AG, ³ Institute of Energy and Climate Research - Fundamental Electrochemistry, Forschungszentrum Jülich

INSTITUTE FOR APPLIED MATERIALS

Outline

Introduction

- Sintering experiments on multilayer actuators
 - Control of the sintering mass loss
 - Electrical characterization
- Comparison to bulk specimens
 - Structure
 - Electrical characterization

Introduction

- Multilayer PZT actuators
 - Commonly used in fuel injection systems

Industrial sintering of actuators

- Both batch and continuous firing are in use
- Different evaporation of PbO
 - Variation of the local sintering atmosphere
- Strong influence on actuator performance
- >15 % variation in strain!

4 16.10.2014 Dr.-Ing. Wolfgang Rheinheimer

PZT material used for actuators

Powder composition

- Pb($Zr_{0,53}Ti_{0,47}$)O₃ + 2mol% Sr($K_{0,25}Nb_{0,75}$)O₃
- 2mol% PbO excess
 - 1.38 ma%
- Actuators
 - 330 layers
 - 85µm thick
 - AgPd electrodes
 - Actuator processing by Bosch

Sintering of actuators in laboratory scale
Control of the PbO loss during sintering

Sintering experiments on multilayer actuators

Sintering Setups for Multilayer Actuators

Setup 1 Non precontaminated crucible 1 Actuator batches Setup 2 Precontaminated crucible 4 Actuator batches

Sintering mass loss increases

Setup 3 Non precontaminated crucible 1 Actuator batches Additional getter plates (16.5g)

Sintering Experiments with Actuators: Mass losses

High field strain for different mass losses

Strong impact of the sintering mass loss on the high field strain

Highest strain for highest sintering mass loss

High field strain for different mass losses and preloads

Strong impact of the sintering mass loss on the high field strain

- Highest strain for highest sintering mass loss
- Strong influence of the mechanical preload
 - strain increases with mechanical preload

High field strain for different preloads

Strong influence of the mechanical preload

- Highest strain at 50 MPa
- Domain clamping effect?
- Domain creep?

Comparison to bulk specimens

Only up to 2 mol% PbO content

reducing the PbO excess

Effects of PbO content on strain under 2 kV/mm

>20% difference

Strong impact of the sintering mass loss on the high field strain

- Highest strain for lowest PbO content
- For PbO excess >2mol% strain at 2kV/mm remains almost constant

High field strain: actuators and bulk specimens

Same behavior of actuators and bulk specimens

Summary

- Control of the PbO loss during sintering of multilayer actuators by special sintering setups is possible
- Stoichiometric (and PbO deficit) PZT gives
 - High strain
 - Low dielectric loss
 - Shift of the structure towards more tetragonal phase compared to PbO excess PZT
- Strong impact of the mechanical preload on the high field strain
- Both actuators and bulk specimen show the same behavior with a variation of the PbO content

Thanks for your attention!

