

M. Blömker¹, E. Erdem², S. Wollstadt¹, J. Rödel¹

- 1: Institute of Materials Science, Technische Universität Darmstadt, Germany
- 2: Institut für Physikalische Chemie I Universität Freiburg, Germany

TECHNISCHE Why Doping / Co-doping? UNIVERSITÄT DARMSTADT In-Acceptor doping, e.g.: $Mn_2O_3 \rightarrow 2Mn'_{Ti,Zr} + V_{O}^{"} + 3O_{O}^{"}$ fluences **Donor doping, e.g.:** $Nb_2O_5 + PbO \rightarrow 2Nb_{Ti,Zr} + V_{Pb}''$ Domain walls **Schottky barriers Defect dipoles** (a) Bottom of $P_{\rm D}$ conduction band Fe³⁺ ₱⊕⊕⊕⊕₽ \mathbf{x} Top of GB Bulk valence band Erdem, E. et al., IEEE Trans. Ultras. Ferroel. Freq. Control Ε 55, 1061-1068 (2008)

Cao, W., Disorder and Strain-Induced Complexity in Funct. Mater. Vol. 148, Ch. 7, 113-134 (Springer Berlin, 2012)

What are Possible Applications?

Piezoelectric flow meters

Nano-positioning

Energy harvesting

High power applications

Compositions / Synthesis / XRD Characterization

$$\begin{split} &\mathsf{Bi}_{0.5}(\mathsf{Na}_{(1-x)}\mathsf{K}_x)_{0.5}\mathsf{Ti}_{0.995}\mathsf{Cu}_y\mathsf{V}_{(0.005-y)}\mathsf{O}_3 \text{ , BNKT20 + excess }\mathsf{V}_2\mathsf{O}_5 \\ &\mathsf{Bi}_{0.5}(\mathsf{Na}_{(1-x)}\mathsf{K}_x)_{0.5}\mathsf{Ti}_{1-y}(\mathsf{Mn},\mathsf{V},\mathsf{Cu},\mathsf{Mo},\mathsf{Al})_y\mathsf{O}_3 \end{split}$$

SEM Investigation / Density

Excess Doping of BNKT20 and BNKT25 with V₂O₅

(Co)-doping V + Cu Overview

TECHNISCHE UNIVERSITÄT DARMSTADT

(Co)-doping V + Cu Overview

(Co)-doping BNKT10

Resonance Measurements (Co-)doped BNKT10

TECHNISCHE UNIVERSITÄT DARMSTADT

High (up to 0.58) thickness mode coupling (Q_M around 5)

 $Q_{M (planar)}$ decreased by Cu

Electron Paramagnetic Resonance (Co-)doped BNKT10

Electron Paramagnetic Resonance (Co-)doped BNKT10

Summary / Conclusions

Co-doping at rhombohedral site of MPB (BNKT10)

- Butterfly-type strain curve, high K_T, P_r, P_{max}, E_c and T_{f-r}
- Transducers, high power applications

Co-doping at MPB (BNKT20) / excess doping

- Polarization loop pinching, high S_{max}, low E_c, relatively low T_{f-r}
 - Actuator applications

Vanadium state V⁵⁺? / V⁴⁺; Cu²⁺ at grain boundaries

Thank you for your attention!

TECHNISCHE UNIVERSITÄT DARMSTADT

