Fabrication and Characterization of Epitaxial KNN Films

Feng Chen, Y-H Li, and Wenbin Wu

High Magnetic Field Laboratory, Chinese Academy of Science (CAS), Hefei, China

Ke Wang and Jing-Feng Li

State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing, China

Shunyi Li and Andreas Klein

Department of Material Science, Technical University of Darmstadt, Darmstadt, Germany
Temperature-Insensitive (K,Na)NbO₃-Based Lead-Free Piezoactuator Ceramics

Ke Wang, Fang-Zhou Yao, Wook Jo, Danka Gobeljic, Vladimir V. Shvartsman, Doru C. Lupascu, Jing-Feng Li, and Jürgen Rödel

KNN: $0.95(\text{Na}_{0.49}\text{K}_{0.49}\text{Li}_{0.02})(\text{Nb}_{0.8}\text{Ta}_{0.2})\text{O}_3 - 0.05\text{CaZrO}_3$ with 2 wt% MnO₂

Outline

- Epitaxial KNN films growth with pulsed laser deposition (PLD)
- High fatigue resistance of KNN films
- KNN/Pt and PZT/Pt interfaces studied with X-ray photoelectron spectroscopy (XPS)
Lattice constant of KNN ceramic

Lattice parameters

<table>
<thead>
<tr>
<th>Material</th>
<th>Formula</th>
<th>Lattice Constant (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSMO</td>
<td>La${0.7}$Sr${0.3}$MnO$_3$</td>
<td>$a_{\text{LSMO}} = 3.873$ Å</td>
</tr>
<tr>
<td>LSSO</td>
<td>La${0.07}$Sr${0.93}$SnO$_3$</td>
<td>$a_{\text{LSSO}} = 4.035$ Å</td>
</tr>
<tr>
<td>STO</td>
<td>SrTiO$_3$</td>
<td>$a_{\text{STO}} = 3.905$ Å</td>
</tr>
</tbody>
</table>

Ceramic Phase Diagram

- **Orthorhombic**: $a = c > b$
- **Tetragonal**: $a = b < c$

Angle β (degree)

High quality epitaxial KNN films can be obtained on STO:Nb substrate.
Ferroelectric properties of KNN/NSTO films

Pt/KNN/STO:Nb(110)

Pt/KNN/STO:Nb(111)

Slim hysteresis

Small \(E_c \) and \(Pr \)
Epitaxial KNN films grown on conductive oxide electrode

- Epitaxial film since only 00l reflections were recorded
- A broad rocking curve of KNN (002) peak
Ferroelectric properties of KNN films

- The saturated P-E loops are measured at 1k Hz
- The asymmetric loop might be induced by the asymmetric interfaces
Hysteresis of KNN film capacitor

M. Abazari et al., APL 93, 192910 (2008).

- $2Pr \sim 15 \, \mu\text{C/cm}^2$
- Higher P_s and saturated loops
Structure variation of KNN films with temperature

The KNN films might have a even higher thermal stability than that of the ceramic
Fatigue of PZT films

The fatigue behavior of PZT epitaxial films highly depends on the (p/n-)type of the conductive oxide electrode.

F. Chen et al. APL, 90, 192907 (2007)
The strain in the films is relaxed reflecting by the same KNN (002) position.
P-E loops of KNN films
Fatigue of KNN films

KNN films show a high fatigue resistance under bipolar cycling.
Reaction at PZT/Pt interface

Chemical decomposition of PZT during Pt deposition

In-situ XPS measurement in poling process
E_F variation at PZT/Pt interface during switching

- PZT/Pt interface is weakly p-type
- Positive state, E_F shift upward, acceptor defects appear
Obvious decomposition of KNN during Pt deposition was Not found
KNN/Pt interface

Plasmon peak with metallic K

Non-Perovskite

Perovskite

Wang et al. JAP, 115, 034104 (2014)
Raman scattering spectrum

Raman shift of the KNN epitaxial films is sensitive to the electrode and substrate used.
KNN/Pt interface (switching)

No binding energy shift and KNN decomposition during switching
Conclusions

- KNN epitaxial films can be fabricated on conductive oxide substrates with PLD
- Their crystalline quality and ferroelectric property depend on the substrate (electrode)
- Epitaxial KNN films might have even higher thermal stability
- KNN films show high fatigue resistance behavior during bipolar switching, which might be induced by phase separation at the surface

Thanks for your attention!